This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| dprdfinv.b | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | dprdfinv | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝐹 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝑁 ∘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 4 | eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 5 | eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 6 | dprdfinv.b | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 7 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 10 | 9 6 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝑁 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝜑 → 𝑁 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 12 | 2 3 4 5 9 | dprdff | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 13 | fcompt | ⊢ ( ( 𝑁 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ∧ 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) → ( 𝑁 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 14 | 11 12 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 15 | 3 4 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 | 2 3 4 5 | dprdfcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 18 | 6 | subginvcl | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 20 | 3 4 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 21 | 20 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ V ) |
| 22 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 23 | 22 | a1i | ⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 24 | 2 3 4 5 | dprdffsupp | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 25 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 26 | 1 | fvexi | ⊢ 0 ∈ V |
| 27 | 26 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 28 | 12 25 20 27 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 29 | 28 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑁 ‘ 0 ) ) |
| 30 | 1 6 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 ‘ 0 ) = 0 ) |
| 31 | 8 30 | syl | ⊢ ( 𝜑 → ( 𝑁 ‘ 0 ) = 0 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑁 ‘ 0 ) = 0 ) |
| 33 | 29 32 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 34 | 33 20 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 35 | fsuppsssupp | ⊢ ( ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∧ ( 𝐹 finSupp 0 ∧ ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) finSupp 0 ) | |
| 36 | 21 23 24 34 35 | syl22anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 37 | 2 3 4 19 36 | dprdwd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝑊 ) |
| 38 | 14 37 | eqeltrd | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝐹 ) ∈ 𝑊 ) |
| 39 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 40 | 2 3 4 5 39 | dprdfcntz | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
| 41 | 9 1 39 6 8 20 12 40 24 | gsumzinv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑁 ∘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| 42 | 38 41 | jca | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝐹 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝑁 ∘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |