This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subginvcl.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| Assertion | subginvcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subginvcl.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 3 | 2 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 4 | simpr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 5 | 2 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 7 | 4 6 | eleqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 8 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 9 | eqid | ⊢ ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) = ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 10 | 8 9 | grpinvcl | ⊢ ( ( ( 𝐺 ↾s 𝑆 ) ∈ Grp ∧ 𝑋 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) → ( ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 11 | 3 7 10 | syl2an2r | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 12 | 2 1 9 | subginv | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑋 ) = ( ( invg ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑋 ) ) |
| 13 | 11 12 6 | 3eltr4d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |