This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| eldprdi.1 | |- ( ph -> G dom DProd S ) |
||
| eldprdi.2 | |- ( ph -> dom S = I ) |
||
| eldprdi.3 | |- ( ph -> F e. W ) |
||
| dprdfinv.b | |- N = ( invg ` G ) |
||
| Assertion | dprdfinv | |- ( ph -> ( ( N o. F ) e. W /\ ( G gsum ( N o. F ) ) = ( N ` ( G gsum F ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | eldprdi.1 | |- ( ph -> G dom DProd S ) |
|
| 4 | eldprdi.2 | |- ( ph -> dom S = I ) |
|
| 5 | eldprdi.3 | |- ( ph -> F e. W ) |
|
| 6 | dprdfinv.b | |- N = ( invg ` G ) |
|
| 7 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 8 | 3 7 | syl | |- ( ph -> G e. Grp ) |
| 9 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 10 | 9 6 | grpinvf | |- ( G e. Grp -> N : ( Base ` G ) --> ( Base ` G ) ) |
| 11 | 8 10 | syl | |- ( ph -> N : ( Base ` G ) --> ( Base ` G ) ) |
| 12 | 2 3 4 5 9 | dprdff | |- ( ph -> F : I --> ( Base ` G ) ) |
| 13 | fcompt | |- ( ( N : ( Base ` G ) --> ( Base ` G ) /\ F : I --> ( Base ` G ) ) -> ( N o. F ) = ( x e. I |-> ( N ` ( F ` x ) ) ) ) |
|
| 14 | 11 12 13 | syl2anc | |- ( ph -> ( N o. F ) = ( x e. I |-> ( N ` ( F ` x ) ) ) ) |
| 15 | 3 4 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 16 | 15 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 17 | 2 3 4 5 | dprdfcl | |- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) |
| 18 | 6 | subginvcl | |- ( ( ( S ` x ) e. ( SubGrp ` G ) /\ ( F ` x ) e. ( S ` x ) ) -> ( N ` ( F ` x ) ) e. ( S ` x ) ) |
| 19 | 16 17 18 | syl2anc | |- ( ( ph /\ x e. I ) -> ( N ` ( F ` x ) ) e. ( S ` x ) ) |
| 20 | 3 4 | dprddomcld | |- ( ph -> I e. _V ) |
| 21 | 20 | mptexd | |- ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) e. _V ) |
| 22 | funmpt | |- Fun ( x e. I |-> ( N ` ( F ` x ) ) ) |
|
| 23 | 22 | a1i | |- ( ph -> Fun ( x e. I |-> ( N ` ( F ` x ) ) ) ) |
| 24 | 2 3 4 5 | dprdffsupp | |- ( ph -> F finSupp .0. ) |
| 25 | ssidd | |- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
|
| 26 | 1 | fvexi | |- .0. e. _V |
| 27 | 26 | a1i | |- ( ph -> .0. e. _V ) |
| 28 | 12 25 20 27 | suppssr | |- ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( F ` x ) = .0. ) |
| 29 | 28 | fveq2d | |- ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` ( F ` x ) ) = ( N ` .0. ) ) |
| 30 | 1 6 | grpinvid | |- ( G e. Grp -> ( N ` .0. ) = .0. ) |
| 31 | 8 30 | syl | |- ( ph -> ( N ` .0. ) = .0. ) |
| 32 | 31 | adantr | |- ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` .0. ) = .0. ) |
| 33 | 29 32 | eqtrd | |- ( ( ph /\ x e. ( I \ ( F supp .0. ) ) ) -> ( N ` ( F ` x ) ) = .0. ) |
| 34 | 33 20 | suppss2 | |- ( ph -> ( ( x e. I |-> ( N ` ( F ` x ) ) ) supp .0. ) C_ ( F supp .0. ) ) |
| 35 | fsuppsssupp | |- ( ( ( ( x e. I |-> ( N ` ( F ` x ) ) ) e. _V /\ Fun ( x e. I |-> ( N ` ( F ` x ) ) ) ) /\ ( F finSupp .0. /\ ( ( x e. I |-> ( N ` ( F ` x ) ) ) supp .0. ) C_ ( F supp .0. ) ) ) -> ( x e. I |-> ( N ` ( F ` x ) ) ) finSupp .0. ) |
|
| 36 | 21 23 24 34 35 | syl22anc | |- ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) finSupp .0. ) |
| 37 | 2 3 4 19 36 | dprdwd | |- ( ph -> ( x e. I |-> ( N ` ( F ` x ) ) ) e. W ) |
| 38 | 14 37 | eqeltrd | |- ( ph -> ( N o. F ) e. W ) |
| 39 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 40 | 2 3 4 5 39 | dprdfcntz | |- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
| 41 | 9 1 39 6 8 20 12 40 24 | gsumzinv | |- ( ph -> ( G gsum ( N o. F ) ) = ( N ` ( G gsum F ) ) ) |
| 42 | 38 41 | jca | |- ( ph -> ( ( N o. F ) e. W /\ ( G gsum ( N o. F ) ) = ( N ` ( G gsum F ) ) ) ) |