This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz2.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdcntz2.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdcntz2.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) | ||
| dprdcntz2.d | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) | ||
| dprdcntz2.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| dprddisj2.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | dprddisj2 | ⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz2.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdcntz2.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdcntz2.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) | |
| 4 | dprdcntz2.d | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) | |
| 5 | dprdcntz2.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 6 | dprddisj2.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 7 | inss1 | ⊢ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) | |
| 8 | 1 2 3 | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 9 | 8 | simprd | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 10 | 7 9 | sstrid | ⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 11 | 10 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ) ) |
| 12 | eqid | ⊢ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 13 | 6 12 | eldprd | ⊢ ( dom 𝑆 = 𝐼 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 14 | 2 13 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 15 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝐺 dom DProd 𝑆 ) |
| 16 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → dom 𝑆 = 𝐼 ) |
| 17 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) | |
| 18 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 19 | 12 15 16 17 18 | dprdff | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 20 | 19 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝑓 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 21 | 5 | difeq2d | ⊢ ( 𝜑 → ( 𝐼 ∖ ( 𝐶 ∩ 𝐷 ) ) = ( 𝐼 ∖ ∅ ) ) |
| 22 | difindi | ⊢ ( 𝐼 ∖ ( 𝐶 ∩ 𝐷 ) ) = ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) | |
| 23 | dif0 | ⊢ ( 𝐼 ∖ ∅ ) = 𝐼 | |
| 24 | 21 22 23 | 3eqtr3g | ⊢ ( 𝜑 → ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) = 𝐼 ) |
| 25 | eqimss2 | ⊢ ( ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) = 𝐼 → 𝐼 ⊆ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → 𝐼 ⊆ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝐼 ⊆ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ) |
| 28 | 27 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ) |
| 29 | elun | ⊢ ( 𝑥 ∈ ( ( 𝐼 ∖ 𝐶 ) ∪ ( 𝐼 ∖ 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐼 ∖ 𝐶 ) ∨ 𝑥 ∈ ( 𝐼 ∖ 𝐷 ) ) ) | |
| 30 | 28 29 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ ( 𝐼 ∖ 𝐶 ) ∨ 𝑥 ∈ ( 𝐼 ∖ 𝐷 ) ) ) |
| 31 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝐶 ⊆ 𝐼 ) |
| 32 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) | |
| 33 | 6 12 15 16 31 17 32 | dmdprdsplitlem | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐶 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 34 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝐷 ⊆ 𝐼 ) |
| 35 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) | |
| 36 | 6 12 15 16 34 17 35 | dmdprdsplitlem | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐷 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 37 | 33 36 | jaodan | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ ( 𝑥 ∈ ( 𝐼 ∖ 𝐶 ) ∨ 𝑥 ∈ ( 𝐼 ∖ 𝐷 ) ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 38 | 30 37 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
| 39 | 38 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 40 | 20 39 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → 𝑓 = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |
| 42 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 43 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 44 | 1 42 43 | 3syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 45 | 1 2 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 46 | 6 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ V ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
| 47 | 44 45 46 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
| 49 | 41 48 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) ∧ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( 𝐺 Σg 𝑓 ) = 0 ) |
| 50 | 49 | ex | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) → ( ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( 𝐺 Σg 𝑓 ) = 0 ) ) |
| 51 | eleq1 | ⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ↔ ( 𝐺 Σg 𝑓 ) ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ) | |
| 52 | elin | ⊢ ( ( 𝐺 Σg 𝑓 ) ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ↔ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) | |
| 53 | 51 52 | bitrdi | ⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ↔ ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) ) |
| 54 | velsn | ⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 55 | eqeq1 | ⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 = 0 ↔ ( 𝐺 Σg 𝑓 ) = 0 ) ) | |
| 56 | 54 55 | bitrid | ⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ { 0 } ↔ ( 𝐺 Σg 𝑓 ) = 0 ) ) |
| 57 | 53 56 | imbi12d | ⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ↔ ( ( ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∧ ( 𝐺 Σg 𝑓 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( 𝐺 Σg 𝑓 ) = 0 ) ) ) |
| 58 | 50 57 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) ) |
| 59 | 58 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) ) |
| 60 | 59 | adantld | ⊢ ( 𝜑 → ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } 𝑥 = ( 𝐺 Σg 𝑓 ) ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) ) |
| 61 | 14 60 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) ) |
| 62 | 61 | com23 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) → 𝑥 ∈ { 0 } ) ) ) |
| 63 | 11 62 | mpdd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) → 𝑥 ∈ { 0 } ) ) |
| 64 | 63 | ssrdv | ⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ { 0 } ) |
| 65 | 8 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 66 | dprdsubg | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 67 | 6 | subg0cl | ⊢ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 68 | 65 66 67 | 3syl | ⊢ ( 𝜑 → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 69 | 1 2 4 | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 70 | 69 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 71 | dprdsubg | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 72 | 6 | subg0cl | ⊢ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 73 | 70 71 72 | 3syl | ⊢ ( 𝜑 → 0 ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 74 | 68 73 | elind | ⊢ ( 𝜑 → 0 ∈ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 75 | 74 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 76 | 64 75 | eqssd | ⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) |