This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdres.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdres.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdres.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) | ||
| Assertion | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdres.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdres.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdres.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) | |
| 4 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 6 | 1 2 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 7 | 6 3 | fssresd | ⊢ ( 𝜑 → ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 8 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝐺 dom DProd 𝑆 ) |
| 9 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → dom 𝑆 = 𝐼 ) |
| 10 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝐴 ⊆ 𝐼 ) |
| 11 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝐴 ) | |
| 12 | 10 11 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝐼 ) |
| 13 | eldifi | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) → 𝑦 ∈ 𝐴 ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ 𝐴 ) |
| 15 | 10 14 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ 𝐼 ) |
| 16 | eldifsni | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) → 𝑦 ≠ 𝑥 ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ≠ 𝑥 ) |
| 18 | 17 | necomd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ≠ 𝑦 ) |
| 19 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 20 | 8 9 12 15 18 19 | dprdcntz | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 21 | 11 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 22 | 14 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) = ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 24 | 20 21 23 | 3sstr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
| 25 | 24 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
| 26 | fvres | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 28 | 27 | ineq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 30 | 29 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 31 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 32 | 5 30 31 | 3syl | ⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 34 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 35 | resss | ⊢ ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 | |
| 36 | imass1 | ⊢ ( ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 → ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) | |
| 37 | 35 36 | ax-mp | ⊢ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) |
| 38 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ 𝐼 ) |
| 39 | ssdif | ⊢ ( 𝐴 ⊆ 𝐼 → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( 𝐼 ∖ { 𝑥 } ) ) | |
| 40 | imass2 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ⊆ ( 𝐼 ∖ { 𝑥 } ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) | |
| 41 | 38 39 40 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 42 | 37 41 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 43 | 42 | unissd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 44 | imassrn | ⊢ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑆 | |
| 45 | 6 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 46 | 29 | subgss | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ⊆ ( Base ‘ 𝐺 ) ) |
| 47 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ( Base ‘ 𝐺 ) ↔ 𝑥 ⊆ ( Base ‘ 𝐺 ) ) | |
| 48 | 46 47 | sylibr | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 49 | 48 | ssriv | ⊢ ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) |
| 50 | 45 49 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 52 | 44 51 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 53 | sspwuni | ⊢ ( ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 54 | 52 53 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 55 | 33 34 43 54 | mrcssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 56 | sslin | ⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 58 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐺 dom DProd 𝑆 ) |
| 59 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom 𝑆 = 𝐼 ) |
| 60 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
| 61 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 62 | 58 59 60 61 34 | dprddisj | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 63 | 57 62 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 64 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 65 | 60 64 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 66 | 61 | subg0cl | ⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 67 | 65 66 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 68 | 43 54 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 69 | 34 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 70 | 33 68 69 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 71 | 61 | subg0cl | ⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 72 | 70 71 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 73 | 67 72 | elind | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 74 | 73 | snssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { ( 0g ‘ 𝐺 ) } ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 75 | 63 74 | eqssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 76 | 28 75 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 77 | 25 76 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
| 78 | 77 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
| 79 | 1 2 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 80 | 79 3 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 81 | 7 | fdmd | ⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) |
| 82 | 19 61 34 | dmdprd | ⊢ ( ( 𝐴 ∈ V ∧ dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 83 | 80 81 82 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 84 | 5 7 78 83 | mpbir3and | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ) |
| 85 | rnss | ⊢ ( ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 → ran ( 𝑆 ↾ 𝐴 ) ⊆ ran 𝑆 ) | |
| 86 | uniss | ⊢ ( ran ( 𝑆 ↾ 𝐴 ) ⊆ ran 𝑆 → ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 ) | |
| 87 | 35 85 86 | mp2b | ⊢ ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 |
| 88 | 87 | a1i | ⊢ ( 𝜑 → ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 ) |
| 89 | sspwuni | ⊢ ( ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) | |
| 90 | 50 89 | sylib | ⊢ ( 𝜑 → ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 91 | 32 34 88 90 | mrcssd | ⊢ ( 𝜑 → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 92 | 34 | dprdspan | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ) |
| 93 | 84 92 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ) |
| 94 | 34 | dprdspan | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 95 | 1 94 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
| 96 | 91 93 95 | 3sstr4d | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 97 | 84 96 | jca | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |