This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdlub.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdlub.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdlub.3 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| dprdlub.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ 𝑇 ) | ||
| Assertion | dprdlub | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdlub.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdlub.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdlub.3 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | dprdlub.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ 𝑇 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } | |
| 7 | 5 6 | dprdval | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) ) |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) ) |
| 9 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 dom DProd 𝑆 ) |
| 11 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 12 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 ∈ Mnd ) |
| 14 | 1 2 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐼 ∈ V ) |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 | subgsubm | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → dom 𝑆 = 𝐼 ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) | |
| 21 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 22 | 6 10 19 20 21 | dprdff | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 23 | 22 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 Fn 𝐼 ) |
| 24 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ 𝑇 ) |
| 25 | 6 10 19 20 | dprdfcl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 26 | 24 25 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑇 ) |
| 27 | 26 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ∀ 𝑘 ∈ 𝐼 ( 𝑓 ‘ 𝑘 ) ∈ 𝑇 ) |
| 28 | ffnfv | ⊢ ( 𝑓 : 𝐼 ⟶ 𝑇 ↔ ( 𝑓 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑓 ‘ 𝑘 ) ∈ 𝑇 ) ) | |
| 29 | 23 27 28 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 : 𝐼 ⟶ 𝑇 ) |
| 30 | 6 10 19 20 9 | dprdfcntz | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) ) |
| 31 | 6 10 19 20 | dprdffsupp | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 finSupp ( 0g ‘ 𝐺 ) ) |
| 32 | 5 9 13 15 18 29 30 31 | gsumzsubmcl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ( 𝐺 Σg 𝑓 ) ∈ 𝑇 ) |
| 33 | 32 | fmpttd | ⊢ ( 𝜑 → ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) : { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ⟶ 𝑇 ) |
| 34 | 33 | frnd | ⊢ ( 𝜑 → ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) ⊆ 𝑇 ) |
| 35 | 8 34 | eqsstrd | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ 𝑇 ) |