This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . All elements of a new ordinal are new ordinals. (Contributed by Scott Fenton, 25-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfon2lem7.1 | ⊢ 𝐴 ∈ V | |
| Assertion | dfon2lem7 | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon2lem7.1 | ⊢ 𝐴 ∈ V | |
| 2 | elequ1 | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡 ) ) | |
| 3 | elequ2 | ⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧 ) ) | |
| 4 | 2 3 | bitrd | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧 ) ) |
| 5 | 4 | notbid | ⊢ ( 𝑡 = 𝑧 → ( ¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧 ) ) |
| 6 | 5 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 7 | 6 | biimpi | ⊢ ( ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 9 | untuni | ⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 ↔ ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) | |
| 10 | 8 9 | sylibr | ⊢ ( ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | sseq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 13 | treq | ⊢ ( 𝑤 = 𝑥 → ( Tr 𝑤 ↔ Tr 𝑥 ) ) | |
| 14 | raleq | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) | |
| 15 | 12 13 14 | 3anbi123d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) ) |
| 16 | 11 15 | elab | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
| 17 | vex | ⊢ 𝑡 ∈ V | |
| 18 | dfon2lem3 | ⊢ ( 𝑡 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr 𝑡 ∧ ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢 ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr 𝑡 ∧ ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢 ) ) |
| 20 | 19 | simprd | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢 ) |
| 21 | untelirr | ⊢ ( ∀ 𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢 → ¬ 𝑡 ∈ 𝑡 ) | |
| 22 | 20 21 | syl | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ¬ 𝑡 ∈ 𝑡 ) |
| 23 | 22 | ralimi | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) |
| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) |
| 25 | 16 24 | sylbi | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) |
| 26 | 10 25 | mprg | ⊢ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 |
| 27 | untelirr | ⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) | |
| 28 | psseq2 | ⊢ ( 𝑡 = 𝑢 → ( 𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑢 ) ) | |
| 29 | 28 | anbi1d | ⊢ ( 𝑡 = 𝑢 → ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) ↔ ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) ) ) |
| 30 | elequ2 | ⊢ ( 𝑡 = 𝑢 → ( 𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑢 ) ) | |
| 31 | 29 30 | imbi12d | ⊢ ( 𝑡 = 𝑢 → ( ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
| 32 | 31 | albidv | ⊢ ( 𝑡 = 𝑢 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
| 33 | 32 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) |
| 34 | 33 | 3anbi3i | ⊢ ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ↔ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
| 35 | 34 | abbii | ⊢ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
| 36 | 35 | unieqi | ⊢ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
| 37 | 36 | eleq2i | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
| 38 | 27 37 | sylnib | ⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ¬ 𝑧 ∈ 𝑧 → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
| 39 | 26 38 | ax-mp | ⊢ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
| 40 | dfon2lem2 | ⊢ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 | |
| 41 | 1 40 | ssexi | ⊢ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ V |
| 42 | 41 | snss | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ↔ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
| 43 | 39 42 | mtbi | ⊢ ¬ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
| 44 | 43 | intnan | ⊢ ¬ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
| 45 | df-suc | ⊢ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) | |
| 46 | 45 | sseq1i | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
| 47 | unss | ⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) | |
| 48 | 46 47 | bitr4i | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
| 49 | 44 48 | mtbir | ⊢ ¬ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
| 50 | 41 | snss | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ↔ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 ) |
| 51 | 45 | sseq1i | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) ⊆ 𝐴 ) |
| 52 | unss | ⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ) ⊆ 𝐴 ) | |
| 53 | 51 52 | bitr4i | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 ) ) |
| 54 | dfon2lem1 | ⊢ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } | |
| 55 | suctr | ⊢ ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) | |
| 56 | 54 55 | ax-mp | ⊢ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } |
| 57 | vex | ⊢ 𝑢 ∈ V | |
| 58 | 57 | elsuc | ⊢ ( 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∨ 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) |
| 59 | eluni2 | ⊢ ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑢 ∈ 𝑥 ) | |
| 60 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) | |
| 61 | 32 | rspccv | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
| 62 | psseq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊊ 𝑢 ↔ 𝑥 ⊊ 𝑢 ) ) | |
| 63 | treq | ⊢ ( 𝑦 = 𝑥 → ( Tr 𝑦 ↔ Tr 𝑥 ) ) | |
| 64 | 62 63 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) ↔ ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) ) ) |
| 65 | elequ1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑢 ↔ 𝑥 ∈ 𝑢 ) ) | |
| 66 | 64 65 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ↔ ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
| 67 | 66 | cbvalvw | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ↔ ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
| 68 | 61 67 | imbitrdi | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
| 69 | 68 | 3ad2ant3 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
| 70 | 16 69 | sylbi | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑢 ∈ 𝑥 → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
| 71 | 60 70 | rexlimi | ⊢ ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑢 ∈ 𝑥 → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
| 72 | 59 71 | sylbi | ⊢ ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
| 73 | psseq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ⊊ 𝑢 ↔ 𝑧 ⊊ 𝑢 ) ) | |
| 74 | treq | ⊢ ( 𝑦 = 𝑧 → ( Tr 𝑦 ↔ Tr 𝑧 ) ) | |
| 75 | 73 74 | anbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) ↔ ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) ) ) |
| 76 | elequ1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢 ) ) | |
| 77 | 75 76 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ↔ ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) ) |
| 78 | 77 | cbvalvw | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) |
| 79 | 61 78 | imbitrdi | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) ) |
| 80 | 79 | 3ad2ant3 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( 𝑢 ∈ 𝑥 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) ) |
| 81 | 16 80 | sylbi | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑢 ∈ 𝑥 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) ) |
| 82 | 81 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑢 ∈ 𝑥 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) |
| 83 | 59 82 | sylbi | ⊢ ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) |
| 84 | 83 | rgen | ⊢ ∀ 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) |
| 85 | dfon2lem6 | ⊢ ( ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ ∀ 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑧 ( ( 𝑧 ⊊ 𝑢 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑢 ) ) → ∀ 𝑥 ( ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) | |
| 86 | 54 84 85 | mp2an | ⊢ ∀ 𝑥 ( ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) |
| 87 | psseq2 | ⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑥 ⊊ 𝑢 ↔ 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) | |
| 88 | 87 | anbi1d | ⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) ↔ ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) ) ) |
| 89 | eleq2 | ⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) | |
| 90 | 88 89 | imbi12d | ⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ( ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) ) |
| 91 | 90 | albidv | ⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑥 ( ( 𝑥 ⊊ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ Tr 𝑥 ) → 𝑥 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) ) |
| 92 | 86 91 | mpbiri | ⊢ ( 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
| 93 | 72 92 | jaoi | ⊢ ( ( 𝑢 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∨ 𝑢 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
| 94 | 58 93 | sylbi | ⊢ ( 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) |
| 95 | 94 | rgen | ⊢ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) |
| 96 | 41 | sucex | ⊢ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ V |
| 97 | sseq1 | ⊢ ( 𝑠 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑠 ⊆ 𝐴 ↔ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ) ) | |
| 98 | treq | ⊢ ( 𝑠 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( Tr 𝑠 ↔ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) | |
| 99 | raleq | ⊢ ( 𝑠 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) | |
| 100 | 97 98 99 | 3anbi123d | ⊢ ( 𝑠 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ↔ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) ) |
| 101 | 96 100 | elab | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } ↔ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) |
| 102 | elssuni | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } ) | |
| 103 | 101 102 | sylbir | ⊢ ( ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∧ ∀ 𝑢 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } ) |
| 104 | 56 95 103 | mp3an23 | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } ) |
| 105 | sseq1 | ⊢ ( 𝑠 = 𝑤 → ( 𝑠 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴 ) ) | |
| 106 | treq | ⊢ ( 𝑠 = 𝑤 → ( Tr 𝑠 ↔ Tr 𝑤 ) ) | |
| 107 | raleq | ⊢ ( 𝑠 = 𝑤 → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑤 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ) | |
| 108 | psseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊊ 𝑢 ↔ 𝑦 ⊊ 𝑢 ) ) | |
| 109 | treq | ⊢ ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) ) | |
| 110 | 108 109 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) ↔ ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) ) ) |
| 111 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑢 ↔ 𝑦 ∈ 𝑢 ) ) | |
| 112 | 110 111 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
| 113 | 112 | cbvalvw | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) |
| 114 | 113 | ralbii | ⊢ ( ∀ 𝑢 ∈ 𝑤 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) |
| 115 | 107 114 | bitrdi | ⊢ ( 𝑠 = 𝑤 → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) |
| 116 | 105 106 115 | 3anbi123d | ⊢ ( 𝑠 = 𝑤 → ( ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) ↔ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) ) ) |
| 117 | 116 | cbvabv | ⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } = { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
| 118 | 117 | unieqi | ⊢ ∪ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀ 𝑢 ∈ 𝑠 ∀ 𝑥 ( ( 𝑥 ⊊ 𝑢 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝑢 ) ) } = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } |
| 119 | 104 118 | sseqtrdi | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) |
| 120 | 119 | a1i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
| 121 | 53 120 | biimtrrid | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 ) → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
| 122 | 40 121 | mpani | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
| 123 | 50 122 | biimtrid | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑢 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑢 ) ) } ) ) |
| 124 | 49 123 | mtoi | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) |
| 125 | psseq1 | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑥 ⊊ 𝐴 ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ) ) | |
| 126 | treq | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( Tr 𝑥 ↔ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) | |
| 127 | 125 126 | anbi12d | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) ) ) |
| 128 | eleq1 | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑥 ∈ 𝐴 ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) ) | |
| 129 | 127 128 | imbi12d | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) ) ) |
| 130 | 41 129 | spcv | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) ) |
| 131 | 54 130 | mpan2i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∈ 𝐴 ) ) |
| 132 | 124 131 | mtod | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ) |
| 133 | dfpss2 | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 ) ) | |
| 134 | 133 | biimpri | ⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊆ 𝐴 ∧ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ) |
| 135 | 40 134 | mpan | ⊢ ( ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ⊊ 𝐴 ) |
| 136 | 132 135 | nsyl2 | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 ) |
| 137 | eluni2 | ⊢ ( 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑧 ∈ 𝑥 ) | |
| 138 | psseq2 | ⊢ ( 𝑡 = 𝑧 → ( 𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑧 ) ) | |
| 139 | 138 | anbi1d | ⊢ ( 𝑡 = 𝑧 → ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) ↔ ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) ) ) |
| 140 | elequ2 | ⊢ ( 𝑡 = 𝑧 → ( 𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 141 | 139 140 | imbi12d | ⊢ ( 𝑡 = 𝑧 → ( ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
| 142 | 141 | albidv | ⊢ ( 𝑡 = 𝑧 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
| 143 | 142 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) |
| 144 | 14 143 | bitrdi | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
| 145 | 12 13 144 | 3anbi123d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) ) |
| 146 | 11 145 | elab | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
| 147 | rsp | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) | |
| 148 | 147 | 3ad2ant3 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
| 149 | 146 148 | sylbi | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ( 𝑧 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) |
| 150 | 149 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } 𝑧 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) |
| 151 | 137 150 | sylbi | ⊢ ( 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) |
| 152 | 151 | rgen | ⊢ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) |
| 153 | raleq | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 → ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) ) | |
| 154 | 152 153 | mpbii | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) } = 𝐴 → ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ) |
| 155 | psseq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝑦 ⊊ 𝑧 ↔ 𝑦 ⊊ 𝐵 ) ) | |
| 156 | 155 | anbi1d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) ↔ ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) ) ) |
| 157 | eleq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 158 | 156 157 | imbi12d | ⊢ ( 𝑧 = 𝐵 → ( ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ↔ ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 159 | 158 | albidv | ⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 160 | 159 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑧 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑧 ) → ( 𝐵 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 161 | 136 154 160 | 3syl | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) ) |