This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suctr | ⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuci | ⊢ ( 𝑦 ∈ suc 𝐴 → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) | |
| 2 | trel | ⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) | |
| 3 | 2 | expdimp | ⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 4 | eleq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 5 | 4 | biimpcd | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝑦 = 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 6 | 5 | adantl | ⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 = 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 7 | 3 6 | jaod | ⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 8 | 1 7 | syl5 | ⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 ∈ suc 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 9 | 8 | expimpd | ⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 10 | elelsuc | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) | |
| 11 | 9 10 | syl6 | ⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 12 | 11 | alrimivv | ⊢ ( Tr 𝐴 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 13 | dftr2 | ⊢ ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |