This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2lem1 | ⊢ Tr ∪ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | truni | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } Tr 𝑦 → Tr ∪ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } ) | |
| 2 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 3 | nfv | ⊢ Ⅎ 𝑥 Tr 𝑦 | |
| 4 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜓 | |
| 5 | 2 3 4 | nf3an | ⊢ Ⅎ 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | sbceq1a | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 8 | treq | ⊢ ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) ) | |
| 9 | sbceq1a | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 10 | 7 8 9 | 3anbi123d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 11 | 5 6 10 | elabf | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ Tr 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 12 | 11 | simp2bi | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } → Tr 𝑦 ) |
| 13 | 1 12 | mprg | ⊢ Tr ∪ { 𝑥 ∣ ( 𝜑 ∧ Tr 𝑥 ∧ 𝜓 ) } |