This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2 | ⊢ On = { 𝑥 ∣ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-on | ⊢ On = { 𝑥 ∣ Ord 𝑥 } | |
| 2 | tz7.7 | ⊢ ( ( Ord 𝑥 ∧ Tr 𝑦 ) → ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥 ) ) ) | |
| 3 | df-pss | ⊢ ( 𝑦 ⊊ 𝑥 ↔ ( 𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥 ) ) | |
| 4 | 2 3 | bitr4di | ⊢ ( ( Ord 𝑥 ∧ Tr 𝑦 ) → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) |
| 5 | 4 | exbiri | ⊢ ( Ord 𝑥 → ( Tr 𝑦 → ( 𝑦 ⊊ 𝑥 → 𝑦 ∈ 𝑥 ) ) ) |
| 6 | 5 | com23 | ⊢ ( Ord 𝑥 → ( 𝑦 ⊊ 𝑥 → ( Tr 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
| 7 | 6 | impd | ⊢ ( Ord 𝑥 → ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) |
| 8 | 7 | alrimiv | ⊢ ( Ord 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) |
| 9 | vex | ⊢ 𝑥 ∈ V | |
| 10 | dfon2lem3 | ⊢ ( 𝑥 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) ) |
| 12 | 11 | simpld | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → Tr 𝑥 ) |
| 13 | 9 | dfon2lem7 | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑡 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) ) ) |
| 14 | 13 | ralrimiv | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑡 ∈ 𝑥 ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) ) |
| 15 | dfon2lem9 | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) → E Fr 𝑥 ) | |
| 16 | psseq2 | ⊢ ( 𝑡 = 𝑧 → ( 𝑢 ⊊ 𝑡 ↔ 𝑢 ⊊ 𝑧 ) ) | |
| 17 | 16 | anbi1d | ⊢ ( 𝑡 = 𝑧 → ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) ↔ ( 𝑢 ⊊ 𝑧 ∧ Tr 𝑢 ) ) ) |
| 18 | elequ2 | ⊢ ( 𝑡 = 𝑧 → ( 𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑧 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑡 = 𝑧 → ( ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) ↔ ( ( 𝑢 ⊊ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑧 ) ) ) |
| 20 | 19 | albidv | ⊢ ( 𝑡 = 𝑧 → ( ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) ↔ ∀ 𝑢 ( ( 𝑢 ⊊ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑧 ) ) ) |
| 21 | psseq1 | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 ⊊ 𝑧 ↔ 𝑣 ⊊ 𝑧 ) ) | |
| 22 | treq | ⊢ ( 𝑢 = 𝑣 → ( Tr 𝑢 ↔ Tr 𝑣 ) ) | |
| 23 | 21 22 | anbi12d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 ⊊ 𝑧 ∧ Tr 𝑢 ) ↔ ( 𝑣 ⊊ 𝑧 ∧ Tr 𝑣 ) ) ) |
| 24 | elequ1 | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ) | |
| 25 | 23 24 | imbi12d | ⊢ ( 𝑢 = 𝑣 → ( ( ( 𝑢 ⊊ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑧 ) ↔ ( ( 𝑣 ⊊ 𝑧 ∧ Tr 𝑣 ) → 𝑣 ∈ 𝑧 ) ) ) |
| 26 | 25 | cbvalvw | ⊢ ( ∀ 𝑢 ( ( 𝑢 ⊊ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑧 ) ↔ ∀ 𝑣 ( ( 𝑣 ⊊ 𝑧 ∧ Tr 𝑣 ) → 𝑣 ∈ 𝑧 ) ) |
| 27 | 20 26 | bitrdi | ⊢ ( 𝑡 = 𝑧 → ( ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) ↔ ∀ 𝑣 ( ( 𝑣 ⊊ 𝑧 ∧ Tr 𝑣 ) → 𝑣 ∈ 𝑧 ) ) ) |
| 28 | 27 | rspccv | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑣 ( ( 𝑣 ⊊ 𝑧 ∧ Tr 𝑣 ) → 𝑣 ∈ 𝑧 ) ) ) |
| 29 | psseq2 | ⊢ ( 𝑡 = 𝑤 → ( 𝑢 ⊊ 𝑡 ↔ 𝑢 ⊊ 𝑤 ) ) | |
| 30 | 29 | anbi1d | ⊢ ( 𝑡 = 𝑤 → ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) ↔ ( 𝑢 ⊊ 𝑤 ∧ Tr 𝑢 ) ) ) |
| 31 | elequ2 | ⊢ ( 𝑡 = 𝑤 → ( 𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑤 ) ) | |
| 32 | 30 31 | imbi12d | ⊢ ( 𝑡 = 𝑤 → ( ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) ↔ ( ( 𝑢 ⊊ 𝑤 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑤 ) ) ) |
| 33 | 32 | albidv | ⊢ ( 𝑡 = 𝑤 → ( ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) ↔ ∀ 𝑢 ( ( 𝑢 ⊊ 𝑤 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑤 ) ) ) |
| 34 | psseq1 | ⊢ ( 𝑢 = 𝑦 → ( 𝑢 ⊊ 𝑤 ↔ 𝑦 ⊊ 𝑤 ) ) | |
| 35 | treq | ⊢ ( 𝑢 = 𝑦 → ( Tr 𝑢 ↔ Tr 𝑦 ) ) | |
| 36 | 34 35 | anbi12d | ⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 ⊊ 𝑤 ∧ Tr 𝑢 ) ↔ ( 𝑦 ⊊ 𝑤 ∧ Tr 𝑦 ) ) ) |
| 37 | elequ1 | ⊢ ( 𝑢 = 𝑦 → ( 𝑢 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) | |
| 38 | 36 37 | imbi12d | ⊢ ( 𝑢 = 𝑦 → ( ( ( 𝑢 ⊊ 𝑤 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑤 ) ↔ ( ( 𝑦 ⊊ 𝑤 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑤 ) ) ) |
| 39 | 38 | cbvalvw | ⊢ ( ∀ 𝑢 ( ( 𝑢 ⊊ 𝑤 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑤 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑤 ) ) |
| 40 | 33 39 | bitrdi | ⊢ ( 𝑡 = 𝑤 → ( ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑤 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑤 ) ) ) |
| 41 | 40 | rspccv | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) → ( 𝑤 ∈ 𝑥 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑤 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑤 ) ) ) |
| 42 | 28 41 | anim12d | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ∀ 𝑣 ( ( 𝑣 ⊊ 𝑧 ∧ Tr 𝑣 ) → 𝑣 ∈ 𝑧 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑤 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑤 ) ) ) ) |
| 43 | vex | ⊢ 𝑧 ∈ V | |
| 44 | vex | ⊢ 𝑤 ∈ V | |
| 45 | 43 44 | dfon2lem5 | ⊢ ( ( ∀ 𝑣 ( ( 𝑣 ⊊ 𝑧 ∧ Tr 𝑣 ) → 𝑣 ∈ 𝑧 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑤 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑤 ) ) → ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) |
| 46 | 42 45 | syl6 | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) ) |
| 47 | 46 | ralrimivv | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) → ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) |
| 48 | 15 47 | jca | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑢 ( ( 𝑢 ⊊ 𝑡 ∧ Tr 𝑢 ) → 𝑢 ∈ 𝑡 ) → ( E Fr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) ) |
| 49 | 14 48 | syl | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( E Fr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) ) |
| 50 | dfwe2 | ⊢ ( E We 𝑥 ↔ ( E Fr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 E 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 E 𝑧 ) ) ) | |
| 51 | epel | ⊢ ( 𝑧 E 𝑤 ↔ 𝑧 ∈ 𝑤 ) | |
| 52 | biid | ⊢ ( 𝑧 = 𝑤 ↔ 𝑧 = 𝑤 ) | |
| 53 | epel | ⊢ ( 𝑤 E 𝑧 ↔ 𝑤 ∈ 𝑧 ) | |
| 54 | 51 52 53 | 3orbi123i | ⊢ ( ( 𝑧 E 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 E 𝑧 ) ↔ ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) |
| 55 | 54 | 2ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 E 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 E 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) |
| 56 | 55 | anbi2i | ⊢ ( ( E Fr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 E 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 E 𝑧 ) ) ↔ ( E Fr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) ) |
| 57 | 50 56 | bitri | ⊢ ( E We 𝑥 ↔ ( E Fr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧 ) ) ) |
| 58 | 49 57 | sylibr | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → E We 𝑥 ) |
| 59 | df-ord | ⊢ ( Ord 𝑥 ↔ ( Tr 𝑥 ∧ E We 𝑥 ) ) | |
| 60 | 12 58 59 | sylanbrc | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → Ord 𝑥 ) |
| 61 | 8 60 | impbii | ⊢ ( Ord 𝑥 ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) |
| 62 | 61 | abbii | ⊢ { 𝑥 ∣ Ord 𝑥 } = { 𝑥 ∣ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) } |
| 63 | 1 62 | eqtri | ⊢ On = { 𝑥 ∣ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) } |