This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | untuni | ⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ) |
| 3 | ralcom4 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ) | |
| 4 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) | |
| 5 | 4 | imbi1i | ⊢ ( ( 𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ) |
| 7 | 2 3 6 | 3bitr4ri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ) |
| 8 | df-ral | ⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ 𝑥 ) ) | |
| 9 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ) | |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) ) |
| 11 | 7 8 10 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥 ) |