This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . The intersection of a nonempty class A of new ordinals is itself a new ordinal and is contained within A (Contributed by Scott Fenton, 26-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2lem8 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ∧ ∩ 𝐴 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | dfon2lem3 | ⊢ ( 𝑥 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( Tr 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) ) |
| 4 | 3 | simpld | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → Tr 𝑥 ) |
| 5 | 4 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ) |
| 6 | trint | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → Tr ∩ 𝐴 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → Tr ∩ 𝐴 ) |
| 9 | 1 | dfon2lem7 | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 10 | 9 | alrimiv | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 12 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) | |
| 13 | 19.21v | ⊢ ( ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) | |
| 14 | 13 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
| 15 | 12 14 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
| 16 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) | |
| 17 | 16 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) ) |
| 18 | eluni2 | ⊢ ( 𝑤 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 ) | |
| 19 | 18 | biimpi | ⊢ ( 𝑤 ∈ ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 ) |
| 20 | 19 | imim1i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ( 𝑤 ∈ ∪ 𝐴 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 21 | 20 | alimi | ⊢ ( ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ∀ 𝑤 ( 𝑤 ∈ ∪ 𝐴 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 22 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) | |
| 23 | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) | |
| 24 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) ) | |
| 25 | 24 | imbi1i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 26 | 23 25 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 27 | 26 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 28 | 22 27 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ↔ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 29 | df-ral | ⊢ ( ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ↔ ∀ 𝑤 ( 𝑤 ∈ ∪ 𝐴 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) | |
| 30 | 21 28 29 | 3imtr4i | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
| 31 | 17 30 | sylbir | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
| 32 | 15 31 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
| 33 | 11 32 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
| 34 | 33 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
| 35 | intssuni | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) | |
| 36 | ssralv | ⊢ ( ∩ 𝐴 ⊆ ∪ 𝐴 → ( ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) → ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) | |
| 37 | 35 36 | syl | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) → ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑤 ∈ ∪ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) → ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) ) |
| 39 | 34 38 | mpd | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) |
| 40 | dfon2lem6 | ⊢ ( ( Tr ∩ 𝐴 ∧ ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) | |
| 41 | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) | |
| 42 | dfon2lem3 | ⊢ ( ∩ 𝐴 ∈ V → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) → ( Tr ∩ 𝐴 ∧ ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 ) ) ) | |
| 43 | 41 42 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) → ( Tr ∩ 𝐴 ∧ ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 44 | 43 | imp | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( Tr ∩ 𝐴 ∧ ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 ) ) |
| 45 | 44 | simprd | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 ) |
| 46 | untelirr | ⊢ ( ∀ 𝑡 ∈ ∩ 𝐴 ¬ 𝑡 ∈ 𝑡 → ¬ ∩ 𝐴 ∈ ∩ 𝐴 ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ¬ ∩ 𝐴 ∈ ∩ 𝐴 ) |
| 48 | 47 | adantlr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ¬ ∩ 𝐴 ∈ ∩ 𝐴 ) |
| 49 | risset | ⊢ ( ∩ 𝐴 ∈ 𝐴 ↔ ∃ 𝑡 ∈ 𝐴 𝑡 = ∩ 𝐴 ) | |
| 50 | 49 | notbii | ⊢ ( ¬ ∩ 𝐴 ∈ 𝐴 ↔ ¬ ∃ 𝑡 ∈ 𝐴 𝑡 = ∩ 𝐴 ) |
| 51 | ralnex | ⊢ ( ∀ 𝑡 ∈ 𝐴 ¬ 𝑡 = ∩ 𝐴 ↔ ¬ ∃ 𝑡 ∈ 𝐴 𝑡 = ∩ 𝐴 ) | |
| 52 | 50 51 | bitr4i | ⊢ ( ¬ ∩ 𝐴 ∈ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 ¬ 𝑡 = ∩ 𝐴 ) |
| 53 | eqcom | ⊢ ( 𝑡 = ∩ 𝐴 ↔ ∩ 𝐴 = 𝑡 ) | |
| 54 | 53 | notbii | ⊢ ( ¬ 𝑡 = ∩ 𝐴 ↔ ¬ ∩ 𝐴 = 𝑡 ) |
| 55 | 44 | simpld | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → Tr ∩ 𝐴 ) |
| 56 | 55 | adantlr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → Tr ∩ 𝐴 ) |
| 57 | psseq2 | ⊢ ( 𝑥 = 𝑡 → ( 𝑦 ⊊ 𝑥 ↔ 𝑦 ⊊ 𝑡 ) ) | |
| 58 | 57 | anbi1d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ↔ ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) ) ) |
| 59 | elequ2 | ⊢ ( 𝑥 = 𝑡 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑡 ) ) | |
| 60 | 58 59 | imbi12d | ⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ↔ ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
| 61 | 60 | albidv | ⊢ ( 𝑥 = 𝑡 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
| 62 | 61 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑡 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
| 63 | 62 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ∈ 𝐴 → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) ) |
| 64 | intss1 | ⊢ ( 𝑡 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑡 ) | |
| 65 | dfpss2 | ⊢ ( ∩ 𝐴 ⊊ 𝑡 ↔ ( ∩ 𝐴 ⊆ 𝑡 ∧ ¬ ∩ 𝐴 = 𝑡 ) ) | |
| 66 | psseq1 | ⊢ ( 𝑦 = ∩ 𝐴 → ( 𝑦 ⊊ 𝑡 ↔ ∩ 𝐴 ⊊ 𝑡 ) ) | |
| 67 | treq | ⊢ ( 𝑦 = ∩ 𝐴 → ( Tr 𝑦 ↔ Tr ∩ 𝐴 ) ) | |
| 68 | 66 67 | anbi12d | ⊢ ( 𝑦 = ∩ 𝐴 → ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) ↔ ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) ) ) |
| 69 | eleq1 | ⊢ ( 𝑦 = ∩ 𝐴 → ( 𝑦 ∈ 𝑡 ↔ ∩ 𝐴 ∈ 𝑡 ) ) | |
| 70 | 68 69 | imbi12d | ⊢ ( 𝑦 = ∩ 𝐴 → ( ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ↔ ( ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑡 ) ) ) |
| 71 | 70 | spcgv | ⊢ ( ∩ 𝐴 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑡 ) ) ) |
| 72 | 41 71 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑡 ) ) ) |
| 73 | 72 | imp | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( ( ∩ 𝐴 ⊊ 𝑡 ∧ Tr ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑡 ) ) |
| 74 | 73 | expd | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( ∩ 𝐴 ⊊ 𝑡 → ( Tr ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) ) |
| 75 | 65 74 | biimtrrid | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) ) → ( ( ∩ 𝐴 ⊆ 𝑡 ∧ ¬ ∩ 𝐴 = 𝑡 ) → ( Tr ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) ) |
| 76 | 75 | exp4b | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( ∩ 𝐴 ⊆ 𝑡 → ( ¬ ∩ 𝐴 = 𝑡 → ( Tr ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
| 77 | 76 | com45 | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( ∩ 𝐴 ⊆ 𝑡 → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
| 78 | 77 | com23 | ⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝐴 ⊆ 𝑡 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
| 79 | 64 78 | syl5 | ⊢ ( 𝐴 ≠ ∅ → ( 𝑡 ∈ 𝐴 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ∈ 𝐴 → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑡 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑡 ) → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) ) |
| 81 | 63 80 | mpdd | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ∈ 𝐴 → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) |
| 82 | 81 | adantr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( 𝑡 ∈ 𝐴 → ( Tr ∩ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) ) |
| 83 | 56 82 | mpid | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( 𝑡 ∈ 𝐴 → ( ¬ ∩ 𝐴 = 𝑡 → ∩ 𝐴 ∈ 𝑡 ) ) ) |
| 84 | 54 83 | syl7bi | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( 𝑡 ∈ 𝐴 → ( ¬ 𝑡 = ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) ) |
| 85 | 84 | ralrimiv | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ∀ 𝑡 ∈ 𝐴 ( ¬ 𝑡 = ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) ) |
| 86 | ralim | ⊢ ( ∀ 𝑡 ∈ 𝐴 ( ¬ 𝑡 = ∩ 𝐴 → ∩ 𝐴 ∈ 𝑡 ) → ( ∀ 𝑡 ∈ 𝐴 ¬ 𝑡 = ∩ 𝐴 → ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( ∀ 𝑡 ∈ 𝐴 ¬ 𝑡 = ∩ 𝐴 → ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
| 88 | 52 87 | biimtrid | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( ¬ ∩ 𝐴 ∈ 𝐴 → ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
| 89 | elintg | ⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) | |
| 90 | 41 89 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝐴 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( ∩ 𝐴 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 ∩ 𝐴 ∈ 𝑡 ) ) |
| 92 | 88 91 | sylibrd | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ( ¬ ∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ ∩ 𝐴 ) ) |
| 93 | 48 92 | mt3d | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ∧ ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ) → ∩ 𝐴 ∈ 𝐴 ) |
| 94 | 93 | ex | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝐴 ) ) |
| 95 | 94 | ancld | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ∧ ∩ 𝐴 ∈ 𝐴 ) ) ) |
| 96 | 40 95 | syl5 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ( Tr ∩ 𝐴 ∧ ∀ 𝑤 ∈ ∩ 𝐴 ∀ 𝑡 ( ( 𝑡 ⊊ 𝑤 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑤 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ∧ ∩ 𝐴 ∈ 𝐴 ) ) ) |
| 97 | 8 39 96 | mp2and | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧 ) → 𝑧 ∈ ∩ 𝐴 ) ∧ ∩ 𝐴 ∈ 𝐴 ) ) |