This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2lem6 | ⊢ ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssss | ⊢ ( 𝑦 ⊊ 𝑆 → 𝑦 ⊆ 𝑆 ) | |
| 2 | ssralv | ⊢ ( 𝑦 ⊆ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑦 ⊊ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 4 | 3 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ∧ 𝑦 ⊊ 𝑆 ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) |
| 5 | 4 | adantrr | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) |
| 6 | 5 | ad2ant2lr | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) |
| 7 | psseq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 ⊊ 𝑥 ↔ 𝑧 ⊊ 𝑤 ) ) | |
| 8 | 7 | anbi1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) ↔ ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) ) ) |
| 9 | elequ2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) ) |
| 11 | 10 | albidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) ) |
| 12 | 11 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑦 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) ) |
| 13 | 6 12 | syl | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( 𝑤 ∈ 𝑦 → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ) |
| 15 | eldifi | ⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑠 ∈ 𝑆 ) | |
| 16 | psseq2 | ⊢ ( 𝑥 = 𝑠 → ( 𝑧 ⊊ 𝑥 ↔ 𝑧 ⊊ 𝑠 ) ) | |
| 17 | 16 | anbi1d | ⊢ ( 𝑥 = 𝑠 → ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) ↔ ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) ) ) |
| 18 | elequ2 | ⊢ ( 𝑥 = 𝑠 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑠 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑥 = 𝑠 → ( ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ) ) |
| 20 | 19 | albidv | ⊢ ( 𝑥 = 𝑠 → ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ) ) |
| 21 | 20 | rspcv | ⊢ ( 𝑠 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ) ) |
| 22 | 15 21 | syl | ⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ) ) |
| 23 | psseq1 | ⊢ ( 𝑧 = 𝑡 → ( 𝑧 ⊊ 𝑠 ↔ 𝑡 ⊊ 𝑠 ) ) | |
| 24 | treq | ⊢ ( 𝑧 = 𝑡 → ( Tr 𝑧 ↔ Tr 𝑡 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑧 = 𝑡 → ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) ↔ ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) ) ) |
| 26 | elequ1 | ⊢ ( 𝑧 = 𝑡 → ( 𝑧 ∈ 𝑠 ↔ 𝑡 ∈ 𝑠 ) ) | |
| 27 | 25 26 | imbi12d | ⊢ ( 𝑧 = 𝑡 → ( ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ↔ ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) ) |
| 28 | 27 | cbvalvw | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ↔ ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) |
| 29 | 22 28 | imbitrdi | ⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) ) |
| 30 | 29 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) |
| 31 | 30 | ad2ant2l | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) |
| 33 | vex | ⊢ 𝑤 ∈ V | |
| 34 | vex | ⊢ 𝑠 ∈ V | |
| 35 | 33 34 | dfon2lem5 | ⊢ ( ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ∧ ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) → ( 𝑤 ∈ 𝑠 ∨ 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ) ) |
| 36 | 3orrot | ⊢ ( ( 𝑤 ∈ 𝑠 ∨ 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ) ↔ ( 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) | |
| 37 | 3orass | ⊢ ( ( 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ↔ ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) ) | |
| 38 | 36 37 | bitri | ⊢ ( ( 𝑤 ∈ 𝑠 ∨ 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ) ↔ ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) ) |
| 39 | eleq1a | ⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 = 𝑠 → 𝑤 ∈ ( 𝑆 ∖ 𝑦 ) ) ) | |
| 40 | elndif | ⊢ ( 𝑤 ∈ 𝑦 → ¬ 𝑤 ∈ ( 𝑆 ∖ 𝑦 ) ) | |
| 41 | 39 40 | nsyli | ⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 ∈ 𝑦 → ¬ 𝑤 = 𝑠 ) ) |
| 42 | 41 | imp | ⊢ ( ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑤 = 𝑠 ) |
| 43 | 42 | adantll | ⊢ ( ( ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑤 = 𝑠 ) |
| 44 | 43 | adantll | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑤 = 𝑠 ) |
| 45 | orel1 | ⊢ ( ¬ 𝑤 = 𝑠 → ( ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) → ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) ) | |
| 46 | trss | ⊢ ( Tr 𝑦 → ( 𝑤 ∈ 𝑦 → 𝑤 ⊆ 𝑦 ) ) | |
| 47 | eldifn | ⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ¬ 𝑠 ∈ 𝑦 ) | |
| 48 | ssel | ⊢ ( 𝑤 ⊆ 𝑦 → ( 𝑠 ∈ 𝑤 → 𝑠 ∈ 𝑦 ) ) | |
| 49 | 48 | con3d | ⊢ ( 𝑤 ⊆ 𝑦 → ( ¬ 𝑠 ∈ 𝑦 → ¬ 𝑠 ∈ 𝑤 ) ) |
| 50 | 47 49 | syl5com | ⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 ⊆ 𝑦 → ¬ 𝑠 ∈ 𝑤 ) ) |
| 51 | 46 50 | syl9 | ⊢ ( Tr 𝑦 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 ∈ 𝑦 → ¬ 𝑠 ∈ 𝑤 ) ) ) |
| 52 | 51 | adantl | ⊢ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑤 ∈ 𝑦 → ¬ 𝑠 ∈ 𝑤 ) ) ) |
| 53 | 52 | imp31 | ⊢ ( ( ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑠 ∈ 𝑤 ) |
| 54 | 53 | adantll | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ¬ 𝑠 ∈ 𝑤 ) |
| 55 | orel1 | ⊢ ( ¬ 𝑠 ∈ 𝑤 → ( ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) → 𝑤 ∈ 𝑠 ) ) | |
| 56 | 54 55 | syl | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) → 𝑤 ∈ 𝑠 ) ) |
| 57 | 45 56 | syl9r | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ¬ 𝑤 = 𝑠 → ( ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) → 𝑤 ∈ 𝑠 ) ) ) |
| 58 | 44 57 | mpd | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ( 𝑤 = 𝑠 ∨ ( 𝑠 ∈ 𝑤 ∨ 𝑤 ∈ 𝑠 ) ) → 𝑤 ∈ 𝑠 ) ) |
| 59 | 38 58 | biimtrid | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ( 𝑤 ∈ 𝑠 ∨ 𝑤 = 𝑠 ∨ 𝑠 ∈ 𝑤 ) → 𝑤 ∈ 𝑠 ) ) |
| 60 | 35 59 | syl5 | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑤 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑤 ) ∧ ∀ 𝑡 ( ( 𝑡 ⊊ 𝑠 ∧ Tr 𝑡 ) → 𝑡 ∈ 𝑠 ) ) → 𝑤 ∈ 𝑠 ) ) |
| 61 | 14 32 60 | mp2and | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ 𝑠 ) |
| 62 | 61 | ex | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑠 ) ) |
| 63 | 62 | ssrdv | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → 𝑦 ⊆ 𝑠 ) |
| 64 | dfpss2 | ⊢ ( 𝑦 ⊊ 𝑠 ↔ ( 𝑦 ⊆ 𝑠 ∧ ¬ 𝑦 = 𝑠 ) ) | |
| 65 | psseq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ⊊ 𝑠 ↔ 𝑦 ⊊ 𝑠 ) ) | |
| 66 | treq | ⊢ ( 𝑧 = 𝑦 → ( Tr 𝑧 ↔ Tr 𝑦 ) ) | |
| 67 | 65 66 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) ↔ ( 𝑦 ⊊ 𝑠 ∧ Tr 𝑦 ) ) ) |
| 68 | elequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑠 ↔ 𝑦 ∈ 𝑠 ) ) | |
| 69 | 67 68 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) ↔ ( ( 𝑦 ⊊ 𝑠 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑠 ) ) ) |
| 70 | 69 | spvv | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) → ( ( 𝑦 ⊊ 𝑠 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑠 ) ) |
| 71 | 70 | expd | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) → ( 𝑦 ⊊ 𝑠 → ( Tr 𝑦 → 𝑦 ∈ 𝑠 ) ) ) |
| 72 | 71 | com23 | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊊ 𝑠 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑠 ) → ( Tr 𝑦 → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) |
| 73 | 22 72 | syl6 | ⊢ ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ( Tr 𝑦 → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) ) |
| 74 | 73 | com3l | ⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ( Tr 𝑦 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) ) |
| 75 | 74 | adantld | ⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) → ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) ) |
| 76 | 75 | adantl | ⊢ ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) → ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) ) ) |
| 77 | 76 | imp32 | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( 𝑦 ⊊ 𝑠 → 𝑦 ∈ 𝑠 ) ) |
| 78 | 64 77 | biimtrrid | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( ( 𝑦 ⊆ 𝑠 ∧ ¬ 𝑦 = 𝑠 ) → 𝑦 ∈ 𝑠 ) ) |
| 79 | 63 78 | mpand | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( ¬ 𝑦 = 𝑠 → 𝑦 ∈ 𝑠 ) ) |
| 80 | 79 | orrd | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) ) → ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) |
| 81 | 80 | anassrs | ⊢ ( ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ) → ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) |
| 82 | 81 | ralrimiva | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) |
| 83 | pssdif | ⊢ ( 𝑦 ⊊ 𝑆 → ( 𝑆 ∖ 𝑦 ) ≠ ∅ ) | |
| 84 | r19.2z | ⊢ ( ( ( 𝑆 ∖ 𝑦 ) ≠ ∅ ∧ ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) → ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) | |
| 85 | 84 | ex | ⊢ ( ( 𝑆 ∖ 𝑦 ) ≠ ∅ → ( ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) ) |
| 86 | 83 85 | syl | ⊢ ( 𝑦 ⊊ 𝑆 → ( ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) ) |
| 87 | 86 | ad2antrl | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) ) ) |
| 88 | eleq1w | ⊢ ( 𝑦 = 𝑠 → ( 𝑦 ∈ 𝑆 ↔ 𝑠 ∈ 𝑆 ) ) | |
| 89 | 15 88 | imbitrrid | ⊢ ( 𝑦 = 𝑠 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) |
| 90 | 89 | a1i | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( 𝑦 = 𝑠 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) ) |
| 91 | trel | ⊢ ( Tr 𝑆 → ( ( 𝑦 ∈ 𝑠 ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) ) | |
| 92 | 91 | expd | ⊢ ( Tr 𝑆 → ( 𝑦 ∈ 𝑠 → ( 𝑠 ∈ 𝑆 → 𝑦 ∈ 𝑆 ) ) ) |
| 93 | 15 92 | syl7 | ⊢ ( Tr 𝑆 → ( 𝑦 ∈ 𝑠 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) ) |
| 94 | 93 | ad2antrr | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( 𝑦 ∈ 𝑠 → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) ) |
| 95 | 90 94 | jaod | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → 𝑦 ∈ 𝑆 ) ) ) |
| 96 | 95 | com23 | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) → ( ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ 𝑆 ) ) ) |
| 97 | 96 | rexlimdv | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( ∃ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ 𝑆 ) ) |
| 98 | 87 97 | syld | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → ( ∀ 𝑠 ∈ ( 𝑆 ∖ 𝑦 ) ( 𝑦 = 𝑠 ∨ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ 𝑆 ) ) |
| 99 | 82 98 | mpd | ⊢ ( ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) ∧ ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) ) → 𝑦 ∈ 𝑆 ) |
| 100 | 99 | ex | ⊢ ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) → ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑆 ) ) |
| 101 | 100 | alrimiv | ⊢ ( ( Tr 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ( ( 𝑧 ⊊ 𝑥 ∧ Tr 𝑧 ) → 𝑧 ∈ 𝑥 ) ) → ∀ 𝑦 ( ( 𝑦 ⊊ 𝑆 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑆 ) ) |