This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of exlimi . For a version based on fewer axioms see rexlimiv . (Contributed by NM, 30-Nov-2003) (Proof shortened by Andrew Salmon, 30-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexlimi.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| rexlimi.2 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) | ||
| Assertion | rexlimi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimi.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | rexlimi.2 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) | |
| 3 | 2 | rgen | ⊢ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) |
| 4 | 1 | r19.23 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |
| 5 | 3 4 | mpbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) |