This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2lem3 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | untelirr | ⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 → ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) | |
| 2 | eluni2 | ⊢ ( 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ↔ ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } 𝑧 ∈ 𝑥 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | sseq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 5 | treq | ⊢ ( 𝑤 = 𝑥 → ( Tr 𝑤 ↔ Tr 𝑥 ) ) | |
| 6 | raleq | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) ) | |
| 7 | 4 5 6 | 3anbi123d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 8 | 3 7 | elab | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) ) |
| 9 | elequ1 | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡 ) ) | |
| 10 | elequ2 | ⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧 ) ) | |
| 11 | 9 10 | bitrd | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧 ) ) |
| 12 | 11 | notbid | ⊢ ( 𝑡 = 𝑧 → ( ¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧 ) ) |
| 13 | 12 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 14 | 13 | biimpi | ⊢ ( ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀ 𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 ) → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 16 | 8 15 | sylbi | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) |
| 17 | rsp | ⊢ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧 ) ) |
| 19 | 18 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑧 ) |
| 20 | 2 19 | sylbi | ⊢ ( 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ¬ 𝑧 ∈ 𝑧 ) |
| 21 | 1 20 | mprg | ⊢ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 22 | dfon2lem2 | ⊢ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 | |
| 23 | dfpss2 | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 ) ) | |
| 24 | dfon2lem1 | ⊢ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } | |
| 25 | ssexg | ⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V ) | |
| 26 | 22 25 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V ) |
| 27 | psseq1 | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( 𝑥 ⊊ 𝐴 ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ) ) | |
| 28 | treq | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( Tr 𝑥 ↔ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) ) |
| 30 | eleq1 | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( 𝑥 ∈ 𝐴 ↔ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) | |
| 31 | 29 30 | imbi12d | ⊢ ( 𝑥 = ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) ) |
| 32 | 31 | spcgv | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) ) |
| 33 | 32 | imp | ⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) |
| 34 | 26 33 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 ) ) |
| 35 | snssi | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ⊆ 𝐴 ) | |
| 36 | unss | ⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ⊆ 𝐴 ) ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ) ⊆ 𝐴 ) | |
| 37 | df-suc | ⊢ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ) | |
| 38 | 37 | sseq1i | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ↔ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∪ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ) ⊆ 𝐴 ) |
| 39 | 36 38 | sylbb2 | ⊢ ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ { ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } } ⊆ 𝐴 ) → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ) |
| 40 | 22 35 39 | sylancr | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ) |
| 41 | suctr | ⊢ ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) | |
| 42 | 24 41 | ax-mp | ⊢ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 43 | untuni | ⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 ↔ ∀ 𝑥 ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧 ) | |
| 44 | 43 16 | mprgbir | ⊢ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 |
| 45 | nfv | ⊢ Ⅎ 𝑡 𝑤 ⊆ 𝐴 | |
| 46 | nfv | ⊢ Ⅎ 𝑡 Tr 𝑤 | |
| 47 | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 | |
| 48 | 45 46 47 | nf3an | ⊢ Ⅎ 𝑡 ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) |
| 49 | 48 | nfab | ⊢ Ⅎ 𝑡 { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 50 | 49 | nfuni | ⊢ Ⅎ 𝑡 ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 51 | 50 | untsucf | ⊢ ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 → ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) |
| 52 | 44 51 | ax-mp | ⊢ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 |
| 53 | sseq1 | ⊢ ( 𝑧 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( 𝑧 ⊆ 𝐴 ↔ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ) ) | |
| 54 | treq | ⊢ ( 𝑧 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( Tr 𝑧 ↔ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) | |
| 55 | nfcv | ⊢ Ⅎ 𝑡 𝑧 | |
| 56 | 50 | nfsuc | ⊢ Ⅎ 𝑡 suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } |
| 57 | 55 56 | raleqf | ⊢ ( 𝑧 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) ) |
| 58 | 53 54 57 | 3anbi123d | ⊢ ( 𝑧 = suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ( ( 𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ) ↔ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 59 | sseq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) | |
| 60 | treq | ⊢ ( 𝑤 = 𝑧 → ( Tr 𝑤 ↔ Tr 𝑧 ) ) | |
| 61 | raleq | ⊢ ( 𝑤 = 𝑧 → ( ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ↔ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ) ) | |
| 62 | 59 60 61 | 3anbi123d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) ↔ ( 𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 63 | 62 | cbvabv | ⊢ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = { 𝑧 ∣ ( 𝑧 ⊆ 𝐴 ∧ Tr 𝑧 ∧ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑡 ) } |
| 64 | 58 63 | elab2g | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ↔ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) ) ) |
| 65 | 64 | biimprd | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V → ( ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 66 | sucexg | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ V ) | |
| 67 | 65 66 | syl11 | ⊢ ( ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ Tr suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑡 ∈ suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑡 ∈ 𝑡 ) → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 68 | 42 52 67 | mp3an23 | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 69 | 68 | com12 | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 70 | elssuni | ⊢ ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) | |
| 71 | sucssel | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) | |
| 72 | 70 71 | syl5 | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 73 | 69 72 | syld | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ( suc ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 74 | 40 73 | mpd | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) |
| 75 | 34 74 | syl6 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 ∧ Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 76 | 24 75 | mpan2i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊊ 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 77 | 23 76 | biimtrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ⊆ 𝐴 ∧ ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 78 | 22 77 | mpani | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( ¬ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ) ) |
| 79 | 21 78 | mt3i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 ) |
| 80 | 24 44 | pm3.2i | ⊢ ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 ) |
| 81 | treq | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ↔ Tr 𝐴 ) ) | |
| 82 | raleq | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ( ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 ↔ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) | |
| 83 | 81 82 | anbi12d | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ( ( Tr ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ∧ ∀ 𝑧 ∈ ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } ¬ 𝑧 ∈ 𝑧 ) ↔ ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) ) |
| 84 | 80 83 | mpbii | ⊢ ( ∪ { 𝑤 ∣ ( 𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀ 𝑡 ∈ 𝑤 ¬ 𝑡 ∈ 𝑡 ) } = 𝐴 → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) |
| 85 | 79 84 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) |
| 86 | 85 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) ) |