This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ratio test for convergence of a complex infinite series. If the ratio A of the absolute values of successive terms in an infinite sequence F is less than 1 for all terms beyond some index B , then the infinite sum of the terms of F converges to a complex number. Equivalent to first part of Exercise 4 of Gleason p. 182. (Contributed by NM, 26-Apr-2005) (Proof shortened by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvgrat.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| cvgrat.2 | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | ||
| cvgrat.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| cvgrat.4 | ⊢ ( 𝜑 → 𝐴 < 1 ) | ||
| cvgrat.5 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| cvgrat.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| cvgrat.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( 𝐴 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | ||
| Assertion | cvgrat | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvgrat.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | cvgrat.2 | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | |
| 3 | cvgrat.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | cvgrat.4 | ⊢ ( 𝜑 → 𝐴 < 1 ) | |
| 5 | cvgrat.5 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 6 | cvgrat.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 7 | cvgrat.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( 𝐴 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | |
| 8 | 5 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 11 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 13 | 12 2 | eleqtrrdi | ⊢ ( 𝜑 → 𝑁 ∈ 𝑊 ) |
| 14 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 − 𝑁 ) = ( 𝑘 − 𝑁 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 16 | eqid | ⊢ ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) = ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) | |
| 17 | ovex | ⊢ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ∈ V | |
| 18 | 15 16 17 | fvmpt | ⊢ ( 𝑘 ∈ 𝑊 → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 20 | 0re | ⊢ 0 ∈ ℝ | |
| 21 | ifcl | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ) | |
| 22 | 20 3 21 | sylancr | ⊢ ( 𝜑 → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑊 ) | |
| 25 | 24 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 26 | uznn0sub | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑘 − 𝑁 ) ∈ ℕ0 ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝑘 − 𝑁 ) ∈ ℕ0 ) |
| 28 | 23 27 | reexpcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ∈ ℝ ) |
| 29 | 19 28 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 30 | uzss | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 31 | 8 30 | syl | ⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 | 31 2 1 | 3sstr4g | ⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) |
| 33 | 32 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑍 ) |
| 34 | 33 6 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 35 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 − 𝑁 ) ∈ ℕ0 ) |
| 36 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 − 𝑁 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) | |
| 37 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) | |
| 38 | 36 37 17 | fvmpt | ⊢ ( ( 𝑘 − 𝑁 ) ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ ( 𝑘 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 39 | 35 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ ( 𝑘 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 40 | 10 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 41 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 42 | 41 | zcnd | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ℂ ) |
| 43 | nn0ex | ⊢ ℕ0 ∈ V | |
| 44 | 43 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ∈ V |
| 45 | 44 | shftval | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ ( 𝑘 − 𝑁 ) ) ) |
| 46 | 40 42 45 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ ( 𝑘 − 𝑁 ) ) ) |
| 47 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 48 | 47 2 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑊 ) |
| 49 | 48 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 50 | 39 46 49 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ‘ 𝑘 ) ) |
| 51 | 10 50 | seqfeq | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) = seq 𝑁 ( + , ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ) ) |
| 52 | 44 | seqshft | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq 𝑁 ( + , ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ) = ( seq ( 𝑁 − 𝑁 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ) |
| 53 | 10 10 52 | syl2anc | ⊢ ( 𝜑 → seq 𝑁 ( + , ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ) = ( seq ( 𝑁 − 𝑁 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ) |
| 54 | 40 | subidd | ⊢ ( 𝜑 → ( 𝑁 − 𝑁 ) = 0 ) |
| 55 | 54 | seqeq1d | ⊢ ( 𝜑 → seq ( 𝑁 − 𝑁 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ) |
| 56 | 55 | oveq1d | ⊢ ( 𝜑 → ( seq ( 𝑁 − 𝑁 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ) |
| 57 | 51 53 56 | 3eqtrd | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ) |
| 58 | 22 | recnd | ⊢ ( 𝜑 → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℂ ) |
| 59 | max2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) | |
| 60 | 3 20 59 | sylancl | ⊢ ( 𝜑 → 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 61 | 22 60 | absidd | ⊢ ( 𝜑 → ( abs ‘ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) = if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 62 | 0lt1 | ⊢ 0 < 1 | |
| 63 | breq1 | ⊢ ( 0 = if ( 𝐴 ≤ 0 , 0 , 𝐴 ) → ( 0 < 1 ↔ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) < 1 ) ) | |
| 64 | breq1 | ⊢ ( 𝐴 = if ( 𝐴 ≤ 0 , 0 , 𝐴 ) → ( 𝐴 < 1 ↔ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) < 1 ) ) | |
| 65 | 63 64 | ifboth | ⊢ ( ( 0 < 1 ∧ 𝐴 < 1 ) → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) < 1 ) |
| 66 | 62 4 65 | sylancr | ⊢ ( 𝜑 → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) < 1 ) |
| 67 | 61 66 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) < 1 ) |
| 68 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑘 ) ) | |
| 69 | ovex | ⊢ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑘 ) ∈ V | |
| 70 | 68 37 69 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑘 ) ) |
| 71 | 70 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑘 ) ) |
| 72 | 58 67 71 | geolim | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ) |
| 73 | seqex | ⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ∈ V | |
| 74 | climshft | ⊢ ( ( 𝑁 ∈ ℤ ∧ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ∈ V ) → ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ↔ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ) ) | |
| 75 | 10 73 74 | sylancl | ⊢ ( 𝜑 → ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ↔ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ) ) |
| 76 | 72 75 | mpbird | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ) |
| 77 | ovex | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ∈ V | |
| 78 | ovex | ⊢ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ∈ V | |
| 79 | 77 78 | breldm | ⊢ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ∈ dom ⇝ ) |
| 80 | 76 79 | syl | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ∈ dom ⇝ ) |
| 81 | 57 80 | eqeltrd | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) ∈ dom ⇝ ) |
| 82 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 83 | 82 | eleq1d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) ) |
| 84 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 85 | 83 84 5 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
| 86 | 85 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ ) |
| 87 | 2fveq3 | ⊢ ( 𝑛 = 𝑁 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) | |
| 88 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 𝑁 ) = ( 𝑁 − 𝑁 ) ) | |
| 89 | 88 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) |
| 90 | 89 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) ) |
| 91 | 87 90 | breq12d | ⊢ ( 𝑛 = 𝑁 → ( ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) ) ) |
| 92 | 91 | imbi2d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) ) ) ) |
| 93 | 2fveq3 | ⊢ ( 𝑛 = 𝑘 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 94 | 15 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) |
| 95 | 93 94 | breq12d | ⊢ ( 𝑛 = 𝑘 → ( ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) |
| 96 | 95 | imbi2d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) ) |
| 97 | 2fveq3 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 98 | oveq1 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 − 𝑁 ) = ( ( 𝑘 + 1 ) − 𝑁 ) ) | |
| 99 | 98 | oveq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) |
| 100 | 99 | oveq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) |
| 101 | 97 100 | breq12d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ↔ ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 102 | 101 | imbi2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) ) |
| 103 | 86 | leidd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 104 | 54 | oveq2d | ⊢ ( 𝜑 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 0 ) ) |
| 105 | 58 | exp0d | ⊢ ( 𝜑 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 0 ) = 1 ) |
| 106 | 104 105 | eqtrd | ⊢ ( 𝜑 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) = 1 ) |
| 107 | 106 | oveq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · 1 ) ) |
| 108 | 86 | recnd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℂ ) |
| 109 | 108 | mulridd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · 1 ) = ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 110 | 107 109 | eqtrd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 111 | 103 110 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) ) |
| 112 | 34 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 113 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ ) |
| 114 | 113 28 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ∈ ℝ ) |
| 115 | 60 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 116 | lemul2a | ⊢ ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ∈ ℝ ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ∧ 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) | |
| 117 | 116 | ex | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ∈ ℝ ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ∧ 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) ) |
| 118 | 112 114 23 115 117 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) ) |
| 119 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℂ ) |
| 120 | 108 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℂ ) |
| 121 | 28 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ∈ ℂ ) |
| 122 | 119 120 121 | mul12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) |
| 123 | 119 27 | expp1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 − 𝑁 ) + 1 ) ) = ( ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) · if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) |
| 124 | 42 2 | eleq2s | ⊢ ( 𝑘 ∈ 𝑊 → 𝑘 ∈ ℂ ) |
| 125 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 126 | addsub | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 𝑁 ) = ( ( 𝑘 − 𝑁 ) + 1 ) ) | |
| 127 | 125 126 | mp3an2 | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 𝑁 ) = ( ( 𝑘 − 𝑁 ) + 1 ) ) |
| 128 | 124 40 127 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( 𝑘 + 1 ) − 𝑁 ) = ( ( 𝑘 − 𝑁 ) + 1 ) ) |
| 129 | 128 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 − 𝑁 ) + 1 ) ) ) |
| 130 | 119 121 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) = ( ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) · if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) |
| 131 | 123 129 130 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) |
| 132 | 131 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) |
| 133 | 122 132 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) |
| 134 | 133 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ↔ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 135 | 118 134 | sylibd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 136 | fveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 137 | 136 | eleq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) ) |
| 138 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 139 | 138 | eleq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) ) |
| 140 | 139 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 141 | 84 140 | sylib | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 142 | 141 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 143 | 2 | peano2uzs | ⊢ ( 𝑘 ∈ 𝑊 → ( 𝑘 + 1 ) ∈ 𝑊 ) |
| 144 | 32 | sselda | ⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ 𝑊 ) → ( 𝑘 + 1 ) ∈ 𝑍 ) |
| 145 | 143 144 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝑘 + 1 ) ∈ 𝑍 ) |
| 146 | 137 142 145 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 147 | 146 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 148 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ∈ ℝ ) |
| 149 | 148 112 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 150 | 23 112 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 151 | 34 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 152 | max1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → 𝐴 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) | |
| 153 | 3 20 152 | sylancl | ⊢ ( 𝜑 → 𝐴 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 154 | 153 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 155 | 148 23 112 151 154 | lemul1ad | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 156 | 147 149 150 7 155 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 157 | peano2uz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 158 | 25 157 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 159 | uznn0sub | ⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝑘 + 1 ) − 𝑁 ) ∈ ℕ0 ) | |
| 160 | 158 159 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( 𝑘 + 1 ) − 𝑁 ) ∈ ℕ0 ) |
| 161 | 23 160 | reexpcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ∈ ℝ ) |
| 162 | 113 161 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ∈ ℝ ) |
| 163 | letr | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ∧ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) | |
| 164 | 147 150 162 163 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 165 | 156 164 | mpand | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 166 | 135 165 | syld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 167 | 48 166 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 168 | 167 | expcom | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) ) |
| 169 | 168 | a2d | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) → ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) ) |
| 170 | 92 96 102 96 111 169 | uzind4i | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) |
| 171 | 170 | impcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) |
| 172 | 49 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) |
| 173 | 171 172 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) ) ) |
| 174 | 2 13 29 34 81 86 173 | cvgcmpce | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 175 | 1 5 6 | iserex | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 176 | 174 175 | mpbird | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |