This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for addition and subtraction. (Contributed by NM, 19-Aug-2001) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴 − 𝐶 ) + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐵 + 𝐴 ) − 𝐶 ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐵 + 𝐴 ) − 𝐶 ) ) |
| 4 | addsubass | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − 𝐶 ) = ( 𝐵 + ( 𝐴 − 𝐶 ) ) ) | |
| 5 | 4 | 3com12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − 𝐶 ) = ( 𝐵 + ( 𝐴 − 𝐶 ) ) ) |
| 6 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) | |
| 7 | addcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐴 − 𝐶 ) ∈ ℂ ) → ( 𝐵 + ( 𝐴 − 𝐶 ) ) = ( ( 𝐴 − 𝐶 ) + 𝐵 ) ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( 𝐵 + ( 𝐴 − 𝐶 ) ) = ( ( 𝐴 − 𝐶 ) + 𝐵 ) ) |
| 9 | 8 | 3impb | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + ( 𝐴 − 𝐶 ) ) = ( ( 𝐴 − 𝐶 ) + 𝐵 ) ) |
| 10 | 9 | 3com12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + ( 𝐴 − 𝐶 ) ) = ( ( 𝐴 − 𝐶 ) + 𝐵 ) ) |
| 11 | 3 5 10 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴 − 𝐶 ) + 𝐵 ) ) |