This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums in the infinite series 1 + A ^ 1 + A ^ 2 ... converge to ( 1 / ( 1 - A ) ) . (Contributed by NM, 15-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | geolim.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| geolim.2 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) | ||
| geolim.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) | ||
| Assertion | geolim | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( 1 / ( 1 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geolim.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | geolim.2 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) | |
| 3 | geolim.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 4 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 5 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 6 | 1 2 | expcnv | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) | |
| 9 | 7 1 8 | sylancr | ⊢ ( 𝜑 → ( 1 − 𝐴 ) ∈ ℂ ) |
| 10 | 1re | ⊢ 1 ∈ ℝ | |
| 11 | 10 | ltnri | ⊢ ¬ 1 < 1 |
| 12 | fveq2 | ⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = ( abs ‘ 1 ) ) | |
| 13 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = 1 ) |
| 15 | 14 | breq1d | ⊢ ( 𝐴 = 1 → ( ( abs ‘ 𝐴 ) < 1 ↔ 1 < 1 ) ) |
| 16 | 11 15 | mtbiri | ⊢ ( 𝐴 = 1 → ¬ ( abs ‘ 𝐴 ) < 1 ) |
| 17 | 16 | necon2ai | ⊢ ( ( abs ‘ 𝐴 ) < 1 → 𝐴 ≠ 1 ) |
| 18 | 2 17 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
| 19 | 18 | necomd | ⊢ ( 𝜑 → 1 ≠ 𝐴 ) |
| 20 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) | |
| 21 | 7 1 20 | sylancr | ⊢ ( 𝜑 → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
| 22 | 21 | necon3bid | ⊢ ( 𝜑 → ( ( 1 − 𝐴 ) ≠ 0 ↔ 1 ≠ 𝐴 ) ) |
| 23 | 19 22 | mpbird | ⊢ ( 𝜑 → ( 1 − 𝐴 ) ≠ 0 ) |
| 24 | 1 9 23 | divcld | ⊢ ( 𝜑 → ( 𝐴 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
| 25 | nn0ex | ⊢ ℕ0 ∈ V | |
| 26 | 25 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ∈ V |
| 27 | 26 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ∈ V ) |
| 28 | oveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑗 ) ) | |
| 29 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) | |
| 30 | ovex | ⊢ ( 𝐴 ↑ 𝑗 ) ∈ V | |
| 31 | 28 29 30 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐴 ↑ 𝑗 ) ) |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐴 ↑ 𝑗 ) ) |
| 33 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) | |
| 34 | 1 33 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 35 | 32 34 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 36 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) = ( ( 𝐴 ↑ 𝑗 ) · 𝐴 ) ) | |
| 37 | 1 36 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) = ( ( 𝐴 ↑ 𝑗 ) · 𝐴 ) ) |
| 38 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 39 | 34 38 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑗 ) · 𝐴 ) = ( 𝐴 · ( 𝐴 ↑ 𝑗 ) ) ) |
| 40 | 37 39 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) = ( 𝐴 · ( 𝐴 ↑ 𝑗 ) ) ) |
| 41 | 40 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 · ( 𝐴 ↑ 𝑗 ) ) / ( 1 − 𝐴 ) ) ) |
| 42 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 − 𝐴 ) ∈ ℂ ) |
| 43 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 − 𝐴 ) ≠ 0 ) |
| 44 | 38 34 42 43 | div23d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 · ( 𝐴 ↑ 𝑗 ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( 𝐴 ↑ 𝑗 ) ) ) |
| 45 | 41 44 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( 𝐴 ↑ 𝑗 ) ) ) |
| 46 | oveq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝑛 + 1 ) = ( 𝑗 + 1 ) ) | |
| 47 | 46 | oveq2d | ⊢ ( 𝑛 = 𝑗 → ( 𝐴 ↑ ( 𝑛 + 1 ) ) = ( 𝐴 ↑ ( 𝑗 + 1 ) ) ) |
| 48 | 47 | oveq1d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) |
| 49 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) | |
| 50 | ovex | ⊢ ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ∈ V | |
| 51 | 48 49 50 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) = ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) |
| 52 | 51 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) = ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) |
| 53 | 32 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( 𝐴 ↑ 𝑗 ) ) ) |
| 54 | 45 52 53 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) = ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) ) ) |
| 55 | 4 5 6 24 27 35 54 | climmulc2 | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ⇝ ( ( 𝐴 / ( 1 − 𝐴 ) ) · 0 ) ) |
| 56 | 24 | mul01d | ⊢ ( 𝜑 → ( ( 𝐴 / ( 1 − 𝐴 ) ) · 0 ) = 0 ) |
| 57 | 55 56 | breqtrd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ⇝ 0 ) |
| 58 | 9 23 | reccld | ⊢ ( 𝜑 → ( 1 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
| 59 | seqex | ⊢ seq 0 ( + , 𝐹 ) ∈ V | |
| 60 | 59 | a1i | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ V ) |
| 61 | peano2nn0 | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) | |
| 62 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) | |
| 63 | 1 61 62 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 64 | 63 42 43 | divcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ∈ ℂ ) |
| 65 | 52 64 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 66 | nn0cn | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℂ ) | |
| 67 | 66 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℂ ) |
| 68 | pncan | ⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) | |
| 69 | 67 7 68 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
| 70 | 69 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 0 ... ( ( 𝑗 + 1 ) − 1 ) ) = ( 0 ... 𝑗 ) ) |
| 71 | 70 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑗 + 1 ) − 1 ) ) ( 𝐴 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑗 ) ( 𝐴 ↑ 𝑘 ) ) |
| 72 | 7 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) |
| 73 | 72 63 42 43 | divsubdird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 − ( 𝐴 ↑ ( 𝑗 + 1 ) ) ) / ( 1 − 𝐴 ) ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) ) |
| 74 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ≠ 1 ) |
| 75 | 61 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 76 | 38 74 75 | geoser | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑗 + 1 ) − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 − ( 𝐴 ↑ ( 𝑗 + 1 ) ) ) / ( 1 − 𝐴 ) ) ) |
| 77 | 52 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) ) |
| 78 | 73 76 77 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑗 + 1 ) − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) ) ) |
| 79 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → 𝜑 ) | |
| 80 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑗 ) → 𝑘 ∈ ℕ0 ) | |
| 81 | 80 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → 𝑘 ∈ ℕ0 ) |
| 82 | 79 81 3 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 83 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) | |
| 84 | 83 4 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
| 85 | 79 1 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → 𝐴 ∈ ℂ ) |
| 86 | 85 81 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 87 | 82 84 86 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑗 ) ( 𝐴 ↑ 𝑘 ) = ( seq 0 ( + , 𝐹 ) ‘ 𝑗 ) ) |
| 88 | 71 78 87 | 3eqtr3rd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐹 ) ‘ 𝑗 ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) ) ) |
| 89 | 4 5 57 58 60 65 88 | climsubc2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( ( 1 / ( 1 − 𝐴 ) ) − 0 ) ) |
| 90 | 58 | subid1d | ⊢ ( 𝜑 → ( ( 1 / ( 1 − 𝐴 ) ) − 0 ) = ( 1 / ( 1 − 𝐴 ) ) ) |
| 91 | 89 90 | breqtrd | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( 1 / ( 1 − 𝐴 ) ) ) |