This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a non-unital ring are subrings. (Contributed by AV, 17-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzsubrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| cntzsubrng.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | ||
| cntzsubrng.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzsubrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzsubrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | cntzsubrng.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 3 | cntzsubrng.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 4 | 2 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 5 | 4 3 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 6 | 5 | a1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 7 | simpll | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) | |
| 8 | ssel2 | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) | |
| 9 | 8 | adantll | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 12 | 1 10 11 | rnglz | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑧 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 13 | 7 9 12 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 14 | 1 10 11 | rngrz | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 15 | 7 9 14 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 16 | 13 15 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 17 | 16 | ralrimiva | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 18 | simpr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) | |
| 19 | 1 11 | rng0cl | ⊢ ( 𝑅 ∈ Rng → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 21 | 2 10 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 22 | 4 21 3 | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) |
| 23 | 18 20 22 | syl2anc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) |
| 24 | 17 23 | mpbird | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 25 | 24 | ne0d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ≠ ∅ ) |
| 26 | simpl2 | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 27 | 21 3 | cntzi | ⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 28 | 26 27 | sylancom | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 29 | simpl3 | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 30 | 21 3 | cntzi | ⊢ ( ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 31 | 29 30 | sylancom | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 32 | 28 31 | oveq12d | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 33 | simpl1l | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) | |
| 34 | 5 26 | sselid | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 35 | 5 29 | sselid | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 36 | simp1r | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) | |
| 37 | 36 | sselda | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 38 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 39 | 1 38 10 | rngdir | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 40 | 33 34 35 37 39 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 41 | 1 38 10 | rngdi | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 42 | 33 37 34 35 41 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 43 | 32 40 42 | 3eqtr4d | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 44 | 43 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 45 | simp1l | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑅 ∈ Rng ) | |
| 46 | simp2 | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 47 | 5 46 | sselid | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 48 | simp3 | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 49 | 5 48 | sselid | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑦 ∈ 𝐵 ) |
| 50 | 1 38 | rngacl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 51 | 45 47 49 50 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 52 | 4 21 3 | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 53 | 36 51 52 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 54 | 44 53 | mpbird | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 55 | 54 | 3expa | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 56 | 55 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 57 | 27 | adantll | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 58 | 57 | fveq2d | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 59 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 60 | simplll | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) | |
| 61 | simplr | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 62 | 5 61 | sselid | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 63 | simplr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) | |
| 64 | 63 | sselda | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 65 | 1 10 59 60 62 64 | rngmneg1 | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 66 | 1 10 59 60 64 62 | rngmneg2 | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 67 | 58 65 66 | 3eqtr4d | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 68 | 67 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 69 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑅 ∈ Grp ) |
| 71 | simpr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 72 | 5 71 | sselid | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 73 | 1 59 70 72 | grpinvcld | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 74 | 4 21 3 | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 75 | 63 73 74 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 76 | 68 75 | mpbird | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 77 | 56 76 | jca | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
| 78 | 77 | ralrimiva | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
| 79 | 69 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → 𝑅 ∈ Grp ) |
| 80 | 1 38 59 | issubg2 | ⊢ ( 𝑅 ∈ Grp → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 𝑍 ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) ) |
| 81 | 79 80 | syl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 𝑍 ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) ) |
| 82 | 6 25 78 81 | mpbir3and | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
| 83 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 84 | 83 | rngmgp | ⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
| 85 | 83 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 86 | 85 | sseq2i | ⊢ ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 87 | 86 | biimpi | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 88 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 89 | 2 | fveq2i | ⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) |
| 90 | 3 89 | eqtri | ⊢ 𝑍 = ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) |
| 91 | eqid | ⊢ ( 𝑍 ‘ 𝑆 ) = ( 𝑍 ‘ 𝑆 ) | |
| 92 | 88 90 91 | cntzsgrpcl | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 93 | 84 87 92 | syl2an | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 94 | 83 10 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 95 | 94 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) |
| 96 | 95 | eleq1i | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 97 | 96 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 98 | 93 97 | sylibr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 99 | 1 10 | issubrng2 | ⊢ ( 𝑅 ∈ Rng → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 101 | 82 98 100 | mpbir2and | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ) |