This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers are closed under the semigroup operation. (Contributed by AV, 17-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzsgrpcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzsgrpcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| cntzsgrpcl.c | ⊢ 𝐶 = ( 𝑍 ‘ 𝑆 ) | ||
| Assertion | cntzsgrpcl | ⊢ ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzsgrpcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzsgrpcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | cntzsgrpcl.c | ⊢ 𝐶 = ( 𝑍 ‘ 𝑆 ) | |
| 4 | simpll | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑀 ∈ Smgrp ) | |
| 5 | 1 2 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 6 | 3 5 | eqsstri | ⊢ 𝐶 ⊆ 𝐵 |
| 7 | simprl | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) | |
| 8 | 6 7 | sselid | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐵 ) |
| 9 | simprr | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑧 ∈ 𝐶 ) | |
| 10 | 6 9 | sselid | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑧 ∈ 𝐵 ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 12 | 1 11 | sgrpcl | ⊢ ( ( 𝑀 ∈ Smgrp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ) |
| 13 | 4 8 10 12 | syl3anc | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ) |
| 14 | 4 | adantr | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑀 ∈ Smgrp ) |
| 15 | 8 | adantr | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 16 | 10 | adantr | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 17 | simpr | ⊢ ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) | |
| 18 | 17 | sselda | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 19 | 18 | adantlr | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 20 | 1 11 | sgrpass | ⊢ ( ( 𝑀 ∈ Smgrp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 21 | 14 15 16 19 20 | syl13anc | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 22 | 3 | eleq2i | ⊢ ( 𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 23 | 11 2 | cntzi | ⊢ ( ( 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 24 | 22 23 | sylanb | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 25 | 9 24 | sylan | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 27 | 1 11 | sgrpass | ⊢ ( ( 𝑀 ∈ Smgrp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 28 | 14 15 19 16 27 | syl13anc | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 29 | 3 | eleq2i | ⊢ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 30 | 11 2 | cntzi | ⊢ ( ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 31 | 29 30 | sylanb | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 32 | 7 31 | sylan | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 33 | 32 | oveq1d | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 34 | 26 28 33 | 3eqtr2d | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 35 | 1 11 | sgrpass | ⊢ ( ( 𝑀 ∈ Smgrp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 36 | 14 19 15 16 35 | syl13anc | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 37 | 21 34 36 | 3eqtrd | ⊢ ( ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 38 | 37 | ralrimiva | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 39 | 3 | eleq2i | ⊢ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐶 ↔ ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 40 | 1 11 2 | elcntz | ⊢ ( 𝑆 ⊆ 𝐵 → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 41 | 39 40 | bitrid | ⊢ ( 𝑆 ⊆ 𝐵 → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐶 ↔ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 42 | 41 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐶 ↔ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 43 | 13 38 42 | mpbir2and | ⊢ ( ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐶 ) |
| 44 | 43 | ralrimivva | ⊢ ( ( 𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐶 ) |