This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a non-unital ring are subrings. (Contributed by AV, 17-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzsubrng.b | |- B = ( Base ` R ) |
|
| cntzsubrng.m | |- M = ( mulGrp ` R ) |
||
| cntzsubrng.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntzsubrng | |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzsubrng.b | |- B = ( Base ` R ) |
|
| 2 | cntzsubrng.m | |- M = ( mulGrp ` R ) |
|
| 3 | cntzsubrng.z | |- Z = ( Cntz ` M ) |
|
| 4 | 2 1 | mgpbas | |- B = ( Base ` M ) |
| 5 | 4 3 | cntzssv | |- ( Z ` S ) C_ B |
| 6 | 5 | a1i | |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) C_ B ) |
| 7 | simpll | |- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> R e. Rng ) |
|
| 8 | ssel2 | |- ( ( S C_ B /\ z e. S ) -> z e. B ) |
|
| 9 | 8 | adantll | |- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> z e. B ) |
| 10 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 11 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 12 | 1 10 11 | rnglz | |- ( ( R e. Rng /\ z e. B ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( 0g ` R ) ) |
| 13 | 7 9 12 | syl2anc | |- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( 0g ` R ) ) |
| 14 | 1 10 11 | rngrz | |- ( ( R e. Rng /\ z e. B ) -> ( z ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 15 | 7 9 14 | syl2anc | |- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( z ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 16 | 13 15 | eqtr4d | |- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) |
| 17 | 16 | ralrimiva | |- ( ( R e. Rng /\ S C_ B ) -> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) |
| 18 | simpr | |- ( ( R e. Rng /\ S C_ B ) -> S C_ B ) |
|
| 19 | 1 11 | rng0cl | |- ( R e. Rng -> ( 0g ` R ) e. B ) |
| 20 | 19 | adantr | |- ( ( R e. Rng /\ S C_ B ) -> ( 0g ` R ) e. B ) |
| 21 | 2 10 | mgpplusg | |- ( .r ` R ) = ( +g ` M ) |
| 22 | 4 21 3 | cntzel | |- ( ( S C_ B /\ ( 0g ` R ) e. B ) -> ( ( 0g ` R ) e. ( Z ` S ) <-> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) ) |
| 23 | 18 20 22 | syl2anc | |- ( ( R e. Rng /\ S C_ B ) -> ( ( 0g ` R ) e. ( Z ` S ) <-> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) ) |
| 24 | 17 23 | mpbird | |- ( ( R e. Rng /\ S C_ B ) -> ( 0g ` R ) e. ( Z ` S ) ) |
| 25 | 24 | ne0d | |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) =/= (/) ) |
| 26 | simpl2 | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> x e. ( Z ` S ) ) |
|
| 27 | 21 3 | cntzi | |- ( ( x e. ( Z ` S ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
| 28 | 26 27 | sylancom | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
| 29 | simpl3 | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> y e. ( Z ` S ) ) |
|
| 30 | 21 3 | cntzi | |- ( ( y e. ( Z ` S ) /\ z e. S ) -> ( y ( .r ` R ) z ) = ( z ( .r ` R ) y ) ) |
| 31 | 29 30 | sylancom | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( y ( .r ` R ) z ) = ( z ( .r ` R ) y ) ) |
| 32 | 28 31 | oveq12d | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 33 | simpl1l | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> R e. Rng ) |
|
| 34 | 5 26 | sselid | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> x e. B ) |
| 35 | 5 29 | sselid | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> y e. B ) |
| 36 | simp1r | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> S C_ B ) |
|
| 37 | 36 | sselda | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> z e. B ) |
| 38 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 39 | 1 38 10 | rngdir | |- ( ( R e. Rng /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) |
| 40 | 33 34 35 37 39 | syl13anc | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) |
| 41 | 1 38 10 | rngdi | |- ( ( R e. Rng /\ ( z e. B /\ x e. B /\ y e. B ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 42 | 33 37 34 35 41 | syl13anc | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 43 | 32 40 42 | 3eqtr4d | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) |
| 44 | 43 | ralrimiva | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) |
| 45 | simp1l | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> R e. Rng ) |
|
| 46 | simp2 | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> x e. ( Z ` S ) ) |
|
| 47 | 5 46 | sselid | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> x e. B ) |
| 48 | simp3 | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> y e. ( Z ` S ) ) |
|
| 49 | 5 48 | sselid | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> y e. B ) |
| 50 | 1 38 | rngacl | |- ( ( R e. Rng /\ x e. B /\ y e. B ) -> ( x ( +g ` R ) y ) e. B ) |
| 51 | 45 47 49 50 | syl3anc | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. B ) |
| 52 | 4 21 3 | cntzel | |- ( ( S C_ B /\ ( x ( +g ` R ) y ) e. B ) -> ( ( x ( +g ` R ) y ) e. ( Z ` S ) <-> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) ) |
| 53 | 36 51 52 | syl2anc | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( ( x ( +g ` R ) y ) e. ( Z ` S ) <-> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) ) |
| 54 | 44 53 | mpbird | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
| 55 | 54 | 3expa | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
| 56 | 55 | ralrimiva | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
| 57 | 27 | adantll | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
| 58 | 57 | fveq2d | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( invg ` R ) ` ( x ( .r ` R ) z ) ) = ( ( invg ` R ) ` ( z ( .r ` R ) x ) ) ) |
| 59 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 60 | simplll | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> R e. Rng ) |
|
| 61 | simplr | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> x e. ( Z ` S ) ) |
|
| 62 | 5 61 | sselid | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> x e. B ) |
| 63 | simplr | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> S C_ B ) |
|
| 64 | 63 | sselda | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> z e. B ) |
| 65 | 1 10 59 60 62 64 | rngmneg1 | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( ( invg ` R ) ` ( x ( .r ` R ) z ) ) ) |
| 66 | 1 10 59 60 64 62 | rngmneg2 | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) = ( ( invg ` R ) ` ( z ( .r ` R ) x ) ) ) |
| 67 | 58 65 66 | 3eqtr4d | |- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) |
| 68 | 67 | ralrimiva | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) |
| 69 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 70 | 69 | ad2antrr | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> R e. Grp ) |
| 71 | simpr | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. ( Z ` S ) ) |
|
| 72 | 5 71 | sselid | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. B ) |
| 73 | 1 59 70 72 | grpinvcld | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` R ) ` x ) e. B ) |
| 74 | 4 21 3 | cntzel | |- ( ( S C_ B /\ ( ( invg ` R ) ` x ) e. B ) -> ( ( ( invg ` R ) ` x ) e. ( Z ` S ) <-> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) ) |
| 75 | 63 73 74 | syl2anc | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( ( invg ` R ) ` x ) e. ( Z ` S ) <-> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) ) |
| 76 | 68 75 | mpbird | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` R ) ` x ) e. ( Z ` S ) ) |
| 77 | 56 76 | jca | |- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) |
| 78 | 77 | ralrimiva | |- ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) |
| 79 | 69 | adantr | |- ( ( R e. Rng /\ S C_ B ) -> R e. Grp ) |
| 80 | 1 38 59 | issubg2 | |- ( R e. Grp -> ( ( Z ` S ) e. ( SubGrp ` R ) <-> ( ( Z ` S ) C_ B /\ ( Z ` S ) =/= (/) /\ A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) ) ) |
| 81 | 79 80 | syl | |- ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubGrp ` R ) <-> ( ( Z ` S ) C_ B /\ ( Z ` S ) =/= (/) /\ A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) ) ) |
| 82 | 6 25 78 81 | mpbir3and | |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubGrp ` R ) ) |
| 83 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 84 | 83 | rngmgp | |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) |
| 85 | 83 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 86 | 85 | sseq2i | |- ( S C_ B <-> S C_ ( Base ` ( mulGrp ` R ) ) ) |
| 87 | 86 | biimpi | |- ( S C_ B -> S C_ ( Base ` ( mulGrp ` R ) ) ) |
| 88 | eqid | |- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
|
| 89 | 2 | fveq2i | |- ( Cntz ` M ) = ( Cntz ` ( mulGrp ` R ) ) |
| 90 | 3 89 | eqtri | |- Z = ( Cntz ` ( mulGrp ` R ) ) |
| 91 | eqid | |- ( Z ` S ) = ( Z ` S ) |
|
| 92 | 88 90 91 | cntzsgrpcl | |- ( ( ( mulGrp ` R ) e. Smgrp /\ S C_ ( Base ` ( mulGrp ` R ) ) ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) |
| 93 | 84 87 92 | syl2an | |- ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) |
| 94 | 83 10 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 95 | 94 | oveqi | |- ( x ( .r ` R ) y ) = ( x ( +g ` ( mulGrp ` R ) ) y ) |
| 96 | 95 | eleq1i | |- ( ( x ( .r ` R ) y ) e. ( Z ` S ) <-> ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) |
| 97 | 96 | 2ralbii | |- ( A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) <-> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) |
| 98 | 93 97 | sylibr | |- ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) |
| 99 | 1 10 | issubrng2 | |- ( R e. Rng -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) |
| 100 | 99 | adantr | |- ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) |
| 101 | 82 98 100 | mpbir2and | |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) |