This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 4 | 1 2 3 | elcntz | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) ) |
| 5 | 4 | baibd | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) |