This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubrng2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| issubrng2.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | issubrng2 | ⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrng2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | issubrng2.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | subrngsubg | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 4 | 2 | subrngmcl | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 5 | 4 | 3expb | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 6 | 5 | ralrimivva | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 7 | 3 6 | jca | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) |
| 8 | simpl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝑅 ∈ Rng ) | |
| 9 | simprl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 10 | eqid | ⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) | |
| 11 | 10 | subgbas | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 14 | 10 13 | ressplusg | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 15 | 9 14 | syl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 16 | 10 2 | ressmulr | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 17 | 9 16 | syl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 18 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 19 | 10 | subgabl | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Abel ) |
| 20 | 18 9 19 | syl2an2r | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Abel ) |
| 21 | simprr | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑦 ) ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑢 · 𝑦 ) ∈ 𝐴 ) ) |
| 24 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑢 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) | |
| 25 | 24 | eleq1d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 26 | 23 25 | rspc2v | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 27 | 21 26 | syl5com | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 28 | 27 | 3impib | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) |
| 29 | 1 | subgss | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |
| 30 | 9 29 | syl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ⊆ 𝐵 ) |
| 31 | 30 | sseld | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵 ) ) |
| 32 | 30 | sseld | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵 ) ) |
| 33 | 30 | sseld | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ) |
| 34 | 31 32 33 | 3anim123d | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 35 | 34 | imp | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) |
| 36 | 1 2 | rngass | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 37 | 36 | adantlr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 38 | 35 37 | syldan | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 39 | 1 13 2 | rngdi | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 40 | 39 | adantlr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 41 | 35 40 | syldan | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 42 | 1 13 2 | rngdir | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 43 | 42 | adantlr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 44 | 35 43 | syldan | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 45 | 12 15 17 20 28 38 41 44 | isrngd | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Rng ) |
| 46 | 1 | issubrng | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) |
| 47 | 8 45 30 46 | syl3anbrc | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubRng ‘ 𝑅 ) ) |
| 48 | 47 | ex | ⊢ ( 𝑅 ∈ Rng → ( ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) → 𝐴 ∈ ( SubRng ‘ 𝑅 ) ) ) |
| 49 | 7 48 | impbid2 | ⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ) |