This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a product in a non-unital ring ( mulneg2 analog). In contrast to ringmneg2 , the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngneglmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rngneglmul.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rngneglmul.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| rngneglmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | ||
| rngneglmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rngneglmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | rngmneg2 | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rngneglmul.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | rngneglmul.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 4 | rngneglmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
| 5 | rngneglmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | rngneglmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 9 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 11 | 1 7 8 3 10 6 | grplinvd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 · ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) = ( 𝑋 · ( 0g ‘ 𝑅 ) ) ) |
| 13 | 1 2 8 | rngrz | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 14 | 4 5 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 15 | 12 14 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 · ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) |
| 16 | 1 2 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 17 | 4 5 6 16 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 18 | 1 3 10 6 | grpinvcld | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 19 | 1 2 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 20 | 4 5 18 19 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 21 | 1 7 8 3 | grpinvid2 | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 · 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ↔ ( ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 22 | 10 17 20 21 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ↔ ( ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 23 | 1 7 2 | rngdi | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 · ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) = ( ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) ) |
| 24 | 23 | eqcomd | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) = ( 𝑋 · ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) ) |
| 25 | 4 5 18 6 24 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) = ( 𝑋 · ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) ) |
| 26 | 25 | eqeq1d | ⊢ ( 𝜑 → ( ( ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑋 · ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 27 | 22 26 | bitrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ↔ ( 𝑋 · ( ( 𝑁 ‘ 𝑌 ) ( +g ‘ 𝑅 ) 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 28 | 15 27 | mpbird | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ) |
| 29 | 28 | eqcomd | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |