This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009) Generalization of ringlz . (Revised by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rngcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rnglz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rnglz | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rngcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | rnglz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 5 | ablgrp | ⊢ ( 𝑅 ∈ Abel → 𝑅 ∈ Grp ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 7 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 8 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 9 | 1 8 3 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 10 | 6 7 9 | syl2anc2 | ⊢ ( 𝑅 ∈ Rng → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 ( +g ‘ 𝑅 ) 0 ) · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 13 | simpl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Rng ) | |
| 14 | 6 7 | syl | ⊢ ( 𝑅 ∈ Rng → 0 ∈ 𝐵 ) |
| 15 | 14 14 | jca | ⊢ ( 𝑅 ∈ Rng → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) |
| 16 | 15 | anim1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ) |
| 17 | df-3an | ⊢ ( ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ↔ ( ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 19 | 1 8 2 | rngdir | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 0 ( +g ‘ 𝑅 ) 0 ) · 𝑋 ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) ) |
| 20 | 13 18 19 | syl2anc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 ( +g ‘ 𝑅 ) 0 ) · 𝑋 ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) ) |
| 21 | 6 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 22 | 14 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 23 | simpr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 24 | 1 2 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) ∈ 𝐵 ) |
| 25 | 13 22 23 24 | syl3anc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) ∈ 𝐵 ) |
| 26 | 1 8 3 | grprid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 0 · 𝑋 ) ∈ 𝐵 ) → ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) = ( 0 · 𝑋 ) ) |
| 27 | 26 | eqcomd | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 0 · 𝑋 ) ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ) |
| 28 | 21 25 27 | syl2anc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ) |
| 29 | 12 20 28 | 3eqtr3d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ) |
| 30 | 1 8 | grplcan | ⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 0 · 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 0 · 𝑋 ) ∈ 𝐵 ) ) → ( ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ↔ ( 0 · 𝑋 ) = 0 ) ) |
| 31 | 21 25 22 25 30 | syl13anc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ↔ ( 0 · 𝑋 ) = 0 ) ) |
| 32 | 29 31 | mpbid | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = 0 ) |