This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzrcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzrcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | 0ss | ⊢ ∅ ⊆ 𝐵 | |
| 4 | sseq1 | ⊢ ( ( 𝑍 ‘ 𝑆 ) = ∅ → ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) | |
| 5 | 3 4 | mpbiri | ⊢ ( ( 𝑍 ‘ 𝑆 ) = ∅ → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 6 | n0 | ⊢ ( ( 𝑍 ‘ 𝑆 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 7 | 1 2 | cntzrcl | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) ) |
| 8 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 9 | 1 8 2 | cntzval | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) } ) |
| 10 | 7 9 | simpl2im | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) } ) |
| 11 | ssrab2 | ⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) } ⊆ 𝐵 | |
| 12 | 10 11 | eqsstrdi | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 13 | 12 | exlimiv | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 14 | 6 13 | sylbi | ⊢ ( ( 𝑍 ‘ 𝑆 ) ≠ ∅ → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 15 | 5 14 | pm2.61ine | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |