This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngdi.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rngdi.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| rngdi.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | rngdi | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngdi.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rngdi.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | rngdi.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | 1 4 2 3 | isrng | ⊢ ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ) ) |
| 6 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( 𝑋 · ( 𝑏 + 𝑐 ) ) ) | |
| 7 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑏 ) = ( 𝑋 · 𝑏 ) ) | |
| 8 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑐 ) = ( 𝑋 · 𝑐 ) ) | |
| 9 | 7 8 | oveq12d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ) |
| 10 | 6 9 | eqeq12d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ↔ ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ) ) |
| 11 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 + 𝑏 ) = ( 𝑋 + 𝑏 ) ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 + 𝑏 ) · 𝑐 ) ) |
| 13 | 8 | oveq1d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ↔ ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ) |
| 15 | 10 14 | anbi12d | ⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ↔ ( ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ∧ ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑏 = 𝑌 → ( 𝑏 + 𝑐 ) = ( 𝑌 + 𝑐 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( 𝑋 · ( 𝑌 + 𝑐 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑌 ) ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ↔ ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 + 𝑏 ) = ( 𝑋 + 𝑌 ) ) | |
| 22 | 21 | oveq1d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 + 𝑌 ) · 𝑐 ) ) |
| 23 | oveq1 | ⊢ ( 𝑏 = 𝑌 → ( 𝑏 · 𝑐 ) = ( 𝑌 · 𝑐 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ↔ ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ) ) |
| 26 | 20 25 | anbi12d | ⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ∧ ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ↔ ( ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ) ) ) |
| 27 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑌 + 𝑐 ) = ( 𝑌 + 𝑍 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑐 = 𝑍 → ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( 𝑋 · ( 𝑌 + 𝑍 ) ) ) |
| 29 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑋 · 𝑐 ) = ( 𝑋 · 𝑍 ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) |
| 31 | 28 30 | eqeq12d | ⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ↔ ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) ) |
| 32 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 + 𝑌 ) · 𝑍 ) ) | |
| 33 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑌 · 𝑐 ) = ( 𝑌 · 𝑍 ) ) | |
| 34 | 29 33 | oveq12d | ⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
| 35 | 32 34 | eqeq12d | ⊢ ( 𝑐 = 𝑍 → ( ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ↔ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) |
| 36 | 31 35 | anbi12d | ⊢ ( 𝑐 = 𝑍 → ( ( ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ) ↔ ( ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) ) |
| 37 | 15 26 36 | rspc3v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) → ( ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) ) |
| 38 | simpl | ⊢ ( ( ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) | |
| 39 | 37 38 | syl6com | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) ) |
| 40 | 39 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Abel ∧ ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) ) |
| 41 | 5 40 | sylbi | ⊢ ( 𝑅 ∈ Rng → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) ) |
| 42 | 41 | imp | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) |