This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009) Generalization of ringrz . (Revised by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rngcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rnglz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rngrz | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rngcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | rnglz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 5 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 7 | 1 6 3 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 8 | 4 5 7 | syl2anc2 | ⊢ ( 𝑅 ∈ Rng → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 0 ( +g ‘ 𝑅 ) 0 ) ) = ( 𝑋 · 0 ) ) |
| 11 | simpr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 1 3 | rng0cl | ⊢ ( 𝑅 ∈ Rng → 0 ∈ 𝐵 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 14 | 11 13 13 | 3jca | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) |
| 15 | 1 6 2 | rngdi | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) → ( 𝑋 · ( 0 ( +g ‘ 𝑅 ) 0 ) ) = ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
| 16 | 14 15 | syldan | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 0 ( +g ‘ 𝑅 ) 0 ) ) = ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
| 17 | 4 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 18 | 1 2 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 · 0 ) ∈ 𝐵 ) |
| 19 | 13 18 | mpd3an3 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) ∈ 𝐵 ) |
| 20 | 1 6 3 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 · 0 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) = ( 𝑋 · 0 ) ) |
| 21 | 20 | eqcomd | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 · 0 ) ∈ 𝐵 ) → ( 𝑋 · 0 ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
| 22 | 17 19 21 | syl2anc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
| 23 | 10 16 22 | 3eqtr3d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ) |
| 24 | 1 6 | grprcan | ⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 𝑋 · 0 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 𝑋 · 0 ) ∈ 𝐵 ) ) → ( ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ↔ ( 𝑋 · 0 ) = 0 ) ) |
| 25 | 17 19 13 19 24 | syl13anc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑋 · 0 ) ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 · 0 ) ) ↔ ( 𝑋 · 0 ) = 0 ) ) |
| 26 | 23 25 | mpbid | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |