This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcld.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvcld.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| grpinvcld.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| grpinvcld.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | grpinvcld | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcld.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvcld.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | grpinvcld.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | grpinvcld.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 6 | 3 4 5 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |