This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any infinite ordinal B is equinumerous to a power of _om . (We are being careful here to show explicit bijections rather than simple equinumerosity because we want a uniform construction for cnfcom3c .) (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 4-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | ||
| cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | ||
| cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | ||
| cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | ||
| cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | ||
| cnfcom.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | ||
| cnfcom3.1 | ⊢ ( 𝜑 → ω ⊆ 𝐵 ) | ||
| cnfcom.x | ⊢ 𝑋 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( 𝐹 ‘ 𝑊 ) ·o 𝑣 ) +o 𝑢 ) ) | ||
| cnfcom.y | ⊢ 𝑌 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑢 ) +o 𝑣 ) ) | ||
| cnfcom.n | ⊢ 𝑁 = ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) | ||
| Assertion | cnfcom3 | ⊢ ( 𝜑 → 𝑁 : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| 2 | cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | |
| 4 | cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | |
| 5 | cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 6 | cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | |
| 7 | cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | |
| 8 | cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 9 | cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | |
| 10 | cnfcom.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | |
| 11 | cnfcom3.1 | ⊢ ( 𝜑 → ω ⊆ 𝐵 ) | |
| 12 | cnfcom.x | ⊢ 𝑋 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( 𝐹 ‘ 𝑊 ) ·o 𝑣 ) +o 𝑢 ) ) | |
| 13 | cnfcom.y | ⊢ 𝑌 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑢 ) +o 𝑣 ) ) | |
| 14 | cnfcom.n | ⊢ 𝑁 = ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) | |
| 15 | omelon | ⊢ ω ∈ On | |
| 16 | suppssdm | ⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 | |
| 17 | 15 | a1i | ⊢ ( 𝜑 → ω ∈ On ) |
| 18 | 1 17 2 | cantnff1o | ⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
| 19 | f1ocnv | ⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) | |
| 20 | f1of | ⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) | |
| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
| 22 | 21 3 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
| 23 | 4 22 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 24 | 1 17 2 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 25 | 23 24 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
| 26 | 25 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
| 27 | 16 26 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
| 28 | ovex | ⊢ ( 𝐹 supp ∅ ) ∈ V | |
| 29 | 5 | oion | ⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On ) |
| 30 | 28 29 | ax-mp | ⊢ dom 𝐺 ∈ On |
| 31 | 30 | elexi | ⊢ dom 𝐺 ∈ V |
| 32 | 31 | uniex | ⊢ ∪ dom 𝐺 ∈ V |
| 33 | 32 | sucid | ⊢ ∪ dom 𝐺 ∈ suc ∪ dom 𝐺 |
| 34 | peano1 | ⊢ ∅ ∈ ω | |
| 35 | 34 | a1i | ⊢ ( 𝜑 → ∅ ∈ ω ) |
| 36 | 11 35 | sseldd | ⊢ ( 𝜑 → ∅ ∈ 𝐵 ) |
| 37 | 1 2 3 4 5 6 7 8 9 10 36 | cnfcom2lem | ⊢ ( 𝜑 → dom 𝐺 = suc ∪ dom 𝐺 ) |
| 38 | 33 37 | eleqtrrid | ⊢ ( 𝜑 → ∪ dom 𝐺 ∈ dom 𝐺 ) |
| 39 | 5 | oif | ⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
| 40 | 39 | ffvelcdmi | ⊢ ( ∪ dom 𝐺 ∈ dom 𝐺 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ ( 𝐹 supp ∅ ) ) |
| 41 | 38 40 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ ( 𝐹 supp ∅ ) ) |
| 42 | 10 41 | eqeltrid | ⊢ ( 𝜑 → 𝑊 ∈ ( 𝐹 supp ∅ ) ) |
| 43 | 27 42 | sseldd | ⊢ ( 𝜑 → 𝑊 ∈ 𝐴 ) |
| 44 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑊 ∈ 𝐴 ) → 𝑊 ∈ On ) | |
| 45 | 2 43 44 | syl2anc | ⊢ ( 𝜑 → 𝑊 ∈ On ) |
| 46 | oecl | ⊢ ( ( ω ∈ On ∧ 𝑊 ∈ On ) → ( ω ↑o 𝑊 ) ∈ On ) | |
| 47 | 15 45 46 | sylancr | ⊢ ( 𝜑 → ( ω ↑o 𝑊 ) ∈ On ) |
| 48 | 26 43 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ∈ ω ) |
| 49 | nnon | ⊢ ( ( 𝐹 ‘ 𝑊 ) ∈ ω → ( 𝐹 ‘ 𝑊 ) ∈ On ) | |
| 50 | 48 49 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ∈ On ) |
| 51 | 13 12 | omf1o | ⊢ ( ( ( ω ↑o 𝑊 ) ∈ On ∧ ( 𝐹 ‘ 𝑊 ) ∈ On ) → ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
| 52 | 47 50 51 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
| 53 | 26 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 54 | 0ex | ⊢ ∅ ∈ V | |
| 55 | 54 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 56 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ On ∧ ∅ ∈ V ) → ( 𝑊 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑊 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) ) | |
| 57 | 53 2 55 56 | syl3anc | ⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑊 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) ) |
| 58 | simpr | ⊢ ( ( 𝑊 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) → ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) | |
| 59 | 57 58 | biimtrdi | ⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝐹 supp ∅ ) → ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) |
| 60 | 42 59 | mpd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) |
| 61 | on0eln0 | ⊢ ( ( 𝐹 ‘ 𝑊 ) ∈ On → ( ∅ ∈ ( 𝐹 ‘ 𝑊 ) ↔ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) | |
| 62 | 48 49 61 | 3syl | ⊢ ( 𝜑 → ( ∅ ∈ ( 𝐹 ‘ 𝑊 ) ↔ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) |
| 63 | 60 62 | mpbird | ⊢ ( 𝜑 → ∅ ∈ ( 𝐹 ‘ 𝑊 ) ) |
| 64 | 1 2 3 4 5 6 7 8 9 10 11 | cnfcom3lem | ⊢ ( 𝜑 → 𝑊 ∈ ( On ∖ 1o ) ) |
| 65 | ondif1 | ⊢ ( 𝑊 ∈ ( On ∖ 1o ) ↔ ( 𝑊 ∈ On ∧ ∅ ∈ 𝑊 ) ) | |
| 66 | 65 | simprbi | ⊢ ( 𝑊 ∈ ( On ∖ 1o ) → ∅ ∈ 𝑊 ) |
| 67 | 64 66 | syl | ⊢ ( 𝜑 → ∅ ∈ 𝑊 ) |
| 68 | omabs | ⊢ ( ( ( ( 𝐹 ‘ 𝑊 ) ∈ ω ∧ ∅ ∈ ( 𝐹 ‘ 𝑊 ) ) ∧ ( 𝑊 ∈ On ∧ ∅ ∈ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) = ( ω ↑o 𝑊 ) ) | |
| 69 | 48 63 45 67 68 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) = ( ω ↑o 𝑊 ) ) |
| 70 | 69 | f1oeq3d | ⊢ ( 𝜑 → ( ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ↔ ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| 71 | 52 70 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 72 | 1 2 3 4 5 6 7 8 9 10 36 | cnfcom2 | ⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |
| 73 | f1oco | ⊢ ( ( ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ∧ ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) → ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) | |
| 74 | 71 72 73 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 75 | f1oeq1 | ⊢ ( 𝑁 = ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) → ( 𝑁 : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) | |
| 76 | 14 75 | ax-mp | ⊢ ( 𝑁 : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 77 | 74 76 | sylibr | ⊢ ( 𝜑 → 𝑁 : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) |