This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal multiplication is also absorbed by powers of _om . (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omabs | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑥 = ∅ → ( ∅ ∈ 𝑥 ↔ ∅ ∈ ∅ ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ∅ → ( ω ↑o 𝑥 ) = ( ω ↑o ∅ ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( 𝐴 ·o ( ω ↑o ∅ ) ) ) |
| 4 | 3 2 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ↔ ( 𝐴 ·o ( ω ↑o ∅ ) ) = ( ω ↑o ∅ ) ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ↔ ( ∅ ∈ ∅ → ( 𝐴 ·o ( ω ↑o ∅ ) ) = ( ω ↑o ∅ ) ) ) ) |
| 6 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( ∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦 ) ) | |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ω ↑o 𝑥 ) = ( ω ↑o 𝑦 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ) |
| 9 | 8 7 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ↔ ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) |
| 10 | 6 9 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ↔ ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) ) |
| 11 | eleq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦 ) ) | |
| 12 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ω ↑o 𝑥 ) = ( ω ↑o suc 𝑦 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) ) |
| 14 | 13 12 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ↔ ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) |
| 15 | 11 14 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ↔ ( ∅ ∈ suc 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
| 16 | eleq2 | ⊢ ( 𝑥 = 𝐵 → ( ∅ ∈ 𝑥 ↔ ∅ ∈ 𝐵 ) ) | |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( ω ↑o 𝑥 ) = ( ω ↑o 𝐵 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( 𝐴 ·o ( ω ↑o 𝐵 ) ) ) |
| 19 | 18 17 | eqeq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ↔ ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) |
| 20 | 16 19 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ↔ ( ∅ ∈ 𝐵 → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) ) |
| 21 | noel | ⊢ ¬ ∅ ∈ ∅ | |
| 22 | 21 | pm2.21i | ⊢ ( ∅ ∈ ∅ → ( 𝐴 ·o ( ω ↑o ∅ ) ) = ( ω ↑o ∅ ) ) |
| 23 | 22 | a1i | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( ∅ ∈ ∅ → ( 𝐴 ·o ( ω ↑o ∅ ) ) = ( ω ↑o ∅ ) ) ) |
| 24 | simprl | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ω ∈ On ) | |
| 25 | simpll | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → 𝐴 ∈ ω ) | |
| 26 | simplr | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ∅ ∈ 𝐴 ) | |
| 27 | omabslem | ⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o ω ) = ω ) | |
| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 ·o ω ) = ω ) |
| 29 | 28 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) ∧ 𝑦 = ∅ ) → ( 𝐴 ·o ω ) = ω ) |
| 30 | suceq | ⊢ ( 𝑦 = ∅ → suc 𝑦 = suc ∅ ) | |
| 31 | df-1o | ⊢ 1o = suc ∅ | |
| 32 | 30 31 | eqtr4di | ⊢ ( 𝑦 = ∅ → suc 𝑦 = 1o ) |
| 33 | 32 | oveq2d | ⊢ ( 𝑦 = ∅ → ( ω ↑o suc 𝑦 ) = ( ω ↑o 1o ) ) |
| 34 | oe1 | ⊢ ( ω ∈ On → ( ω ↑o 1o ) = ω ) | |
| 35 | 34 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ω ↑o 1o ) = ω ) |
| 36 | 33 35 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) ∧ 𝑦 = ∅ ) → ( ω ↑o suc 𝑦 ) = ω ) |
| 37 | 36 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) ∧ 𝑦 = ∅ ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( 𝐴 ·o ω ) ) |
| 38 | 29 37 36 | 3eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) ∧ 𝑦 = ∅ ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) |
| 39 | 38 | ex | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝑦 = ∅ → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) |
| 40 | 39 | a1dd | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝑦 = ∅ → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
| 41 | oveq1 | ⊢ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) = ( ( ω ↑o 𝑦 ) ·o ω ) ) | |
| 42 | oesuc | ⊢ ( ( ω ∈ On ∧ 𝑦 ∈ On ) → ( ω ↑o suc 𝑦 ) = ( ( ω ↑o 𝑦 ) ·o ω ) ) | |
| 43 | 42 | adantl | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ω ↑o suc 𝑦 ) = ( ( ω ↑o 𝑦 ) ·o ω ) ) |
| 44 | 43 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( 𝐴 ·o ( ( ω ↑o 𝑦 ) ·o ω ) ) ) |
| 45 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → 𝐴 ∈ On ) |
| 47 | oecl | ⊢ ( ( ω ∈ On ∧ 𝑦 ∈ On ) → ( ω ↑o 𝑦 ) ∈ On ) | |
| 48 | 47 | adantl | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ω ↑o 𝑦 ) ∈ On ) |
| 49 | omass | ⊢ ( ( 𝐴 ∈ On ∧ ( ω ↑o 𝑦 ) ∈ On ∧ ω ∈ On ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) = ( 𝐴 ·o ( ( ω ↑o 𝑦 ) ·o ω ) ) ) | |
| 50 | 46 48 24 49 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) = ( 𝐴 ·o ( ( ω ↑o 𝑦 ) ·o ω ) ) ) |
| 51 | 44 50 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) ) |
| 52 | 51 43 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ↔ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) = ( ( ω ↑o 𝑦 ) ·o ω ) ) ) |
| 53 | 41 52 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) |
| 54 | 53 | imim2d | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
| 55 | 54 | com23 | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ∅ ∈ 𝑦 → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
| 56 | simprr | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → 𝑦 ∈ On ) | |
| 57 | on0eqel | ⊢ ( 𝑦 ∈ On → ( 𝑦 = ∅ ∨ ∅ ∈ 𝑦 ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝑦 = ∅ ∨ ∅ ∈ 𝑦 ) ) |
| 59 | 40 55 58 | mpjaod | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) |
| 60 | 59 | a1dd | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ suc 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
| 61 | 60 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) ∧ 𝑦 ∈ On ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ suc 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
| 62 | 61 | expcom | ⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ suc 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) ) |
| 63 | 45 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → 𝐴 ∈ On ) |
| 64 | simprl | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ω ∈ On ) | |
| 65 | simprr | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → Lim 𝑥 ) | |
| 66 | vex | ⊢ 𝑥 ∈ V | |
| 67 | 65 66 | jctil | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) |
| 68 | limelon | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) | |
| 69 | 67 68 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → 𝑥 ∈ On ) |
| 70 | oecl | ⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ↑o 𝑥 ) ∈ On ) | |
| 71 | 64 69 70 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
| 72 | 71 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
| 73 | 1onn | ⊢ 1o ∈ ω | |
| 74 | ondif2 | ⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) | |
| 75 | 64 73 74 | sylanblrc | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ω ∈ ( On ∖ 2o ) ) |
| 76 | 75 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ω ∈ ( On ∖ 2o ) ) |
| 77 | 67 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) |
| 78 | oelimcl | ⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → Lim ( ω ↑o 𝑥 ) ) | |
| 79 | 76 77 78 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → Lim ( ω ↑o 𝑥 ) ) |
| 80 | omlim | ⊢ ( ( 𝐴 ∈ On ∧ ( ( ω ↑o 𝑥 ) ∈ On ∧ Lim ( ω ↑o 𝑥 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ∪ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) | |
| 81 | 63 72 79 80 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ∪ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 82 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ω ∈ On ) | |
| 83 | oelim2 | ⊢ ( ( ω ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ω ↑o 𝑥 ) = ∪ 𝑦 ∈ ( 𝑥 ∖ 1o ) ( ω ↑o 𝑦 ) ) | |
| 84 | 82 77 83 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) = ∪ 𝑦 ∈ ( 𝑥 ∖ 1o ) ( ω ↑o 𝑦 ) ) |
| 85 | 84 | eleq2d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) ↔ 𝑧 ∈ ∪ 𝑦 ∈ ( 𝑥 ∖ 1o ) ( ω ↑o 𝑦 ) ) ) |
| 86 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ ( 𝑥 ∖ 1o ) ( ω ↑o 𝑦 ) ↔ ∃ 𝑦 ∈ ( 𝑥 ∖ 1o ) 𝑧 ∈ ( ω ↑o 𝑦 ) ) | |
| 87 | 85 86 | bitrdi | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) ↔ ∃ 𝑦 ∈ ( 𝑥 ∖ 1o ) 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
| 88 | 69 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → 𝑥 ∈ On ) |
| 89 | anass | ⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) | |
| 90 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 91 | on0eln0 | ⊢ ( 𝑦 ∈ On → ( ∅ ∈ 𝑦 ↔ 𝑦 ≠ ∅ ) ) | |
| 92 | 90 91 | syl | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ∅ ∈ 𝑦 ↔ 𝑦 ≠ ∅ ) ) |
| 93 | 92 | pm5.32da | ⊢ ( 𝑥 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ≠ ∅ ) ) ) |
| 94 | dif1o | ⊢ ( 𝑦 ∈ ( 𝑥 ∖ 1o ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ≠ ∅ ) ) | |
| 95 | 93 94 | bitr4di | ⊢ ( 𝑥 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦 ) ↔ 𝑦 ∈ ( 𝑥 ∖ 1o ) ) ) |
| 96 | 95 | anbi1d | ⊢ ( 𝑥 ∈ On → ( ( ( 𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ↔ ( 𝑦 ∈ ( 𝑥 ∖ 1o ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) |
| 97 | 89 96 | bitr3id | ⊢ ( 𝑥 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ↔ ( 𝑦 ∈ ( 𝑥 ∖ 1o ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) |
| 98 | 97 | rexbidv2 | ⊢ ( 𝑥 ∈ On → ( ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ↔ ∃ 𝑦 ∈ ( 𝑥 ∖ 1o ) 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
| 99 | 88 98 | syl | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ↔ ∃ 𝑦 ∈ ( 𝑥 ∖ 1o ) 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
| 100 | 87 99 | bitr4d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) ↔ ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) |
| 101 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ∃ 𝑦 ∈ 𝑥 ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) | |
| 102 | id | ⊢ ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) | |
| 103 | 102 | imp | ⊢ ( ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ∅ ∈ 𝑦 ) → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) |
| 104 | 103 | anim1i | ⊢ ( ( ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ∅ ∈ 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
| 105 | 104 | anasss | ⊢ ( ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
| 106 | 71 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
| 107 | eloni | ⊢ ( ( ω ↑o 𝑥 ) ∈ On → Ord ( ω ↑o 𝑥 ) ) | |
| 108 | 106 107 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → Ord ( ω ↑o 𝑥 ) ) |
| 109 | simprr | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑧 ∈ ( ω ↑o 𝑦 ) ) | |
| 110 | 64 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ω ∈ On ) |
| 111 | 69 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑥 ∈ On ) |
| 112 | simplr | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑦 ∈ 𝑥 ) | |
| 113 | 111 112 90 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑦 ∈ On ) |
| 114 | 110 113 47 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑦 ) ∈ On ) |
| 115 | onelon | ⊢ ( ( ( ω ↑o 𝑦 ) ∈ On ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) → 𝑧 ∈ On ) | |
| 116 | 114 109 115 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑧 ∈ On ) |
| 117 | 45 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → 𝐴 ∈ On ) |
| 118 | 117 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝐴 ∈ On ) |
| 119 | simplr | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ∅ ∈ 𝐴 ) | |
| 120 | 119 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ∅ ∈ 𝐴 ) |
| 121 | omord2 | ⊢ ( ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ ( ω ↑o 𝑦 ) ↔ ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ) ) | |
| 122 | 116 114 118 120 121 | syl31anc | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑦 ) ↔ ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ) ) |
| 123 | 109 122 | mpbid | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ) |
| 124 | simprl | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) | |
| 125 | 123 124 | eleqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑦 ) ) |
| 126 | 75 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ω ∈ ( On ∖ 2o ) ) |
| 127 | oeord | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( 𝑦 ∈ 𝑥 ↔ ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) ) | |
| 128 | 113 111 126 127 | syl3anc | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝑦 ∈ 𝑥 ↔ ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) ) |
| 129 | 112 128 | mpbid | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) |
| 130 | ontr1 | ⊢ ( ( ω ↑o 𝑥 ) ∈ On → ( ( ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑦 ) ∧ ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑥 ) ) ) | |
| 131 | 106 130 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ( ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑦 ) ∧ ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑥 ) ) ) |
| 132 | 125 129 131 | mp2and | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑥 ) ) |
| 133 | ordelss | ⊢ ( ( Ord ( ω ↑o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑥 ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) | |
| 134 | 108 132 133 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) |
| 135 | 134 | ex | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
| 136 | 105 135 | syl5 | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
| 137 | 136 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( ∃ 𝑦 ∈ 𝑥 ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
| 138 | 101 137 | syl5 | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
| 139 | 138 | expdimp | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
| 140 | 100 139 | sylbid | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
| 141 | 140 | ralrimiv | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ∀ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) |
| 142 | iunss | ⊢ ( ∪ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ↔ ∀ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) | |
| 143 | 141 142 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ∪ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) |
| 144 | 81 143 | eqsstrd | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) ⊆ ( ω ↑o 𝑥 ) ) |
| 145 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ∅ ∈ 𝐴 ) | |
| 146 | omword2 | ⊢ ( ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ω ↑o 𝑥 ) ⊆ ( 𝐴 ·o ( ω ↑o 𝑥 ) ) ) | |
| 147 | 72 63 145 146 | syl21anc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) ⊆ ( 𝐴 ·o ( ω ↑o 𝑥 ) ) ) |
| 148 | 144 147 | eqssd | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) |
| 149 | 148 | ex | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ) |
| 150 | 149 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ) |
| 151 | 150 | a1dd | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ) ) |
| 152 | 151 | expcom | ⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ) ) ) |
| 153 | 5 10 15 20 23 62 152 | tfinds3 | ⊢ ( 𝐵 ∈ On → ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) ) |
| 154 | 153 | com12 | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) ) |
| 155 | 154 | adantrr | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) ) |
| 156 | 155 | imp32 | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |
| 157 | 156 | an32s | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |
| 158 | nnm0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 159 | 158 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ∅ ) = ∅ ) |
| 160 | fnoe | ⊢ ↑o Fn ( On × On ) | |
| 161 | fndm | ⊢ ( ↑o Fn ( On × On ) → dom ↑o = ( On × On ) ) | |
| 162 | 160 161 | ax-mp | ⊢ dom ↑o = ( On × On ) |
| 163 | 162 | ndmov | ⊢ ( ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ↑o 𝐵 ) = ∅ ) |
| 164 | 163 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( ω ↑o 𝐵 ) = ∅ ) |
| 165 | 164 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( 𝐴 ·o ∅ ) ) |
| 166 | 159 165 164 | 3eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |
| 167 | 157 166 | pm2.61dan | ⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |