This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnfcom3c . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom3c.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| cnfcom3c.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝑏 ) | ||
| cnfcom3c.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cnfcom3c.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | ||
| cnfcom3c.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | ||
| cnfcom3c.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| cnfcom3c.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | ||
| cnfcom3c.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | ||
| cnfcom3c.x | ⊢ 𝑋 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( 𝐹 ‘ 𝑊 ) ·o 𝑣 ) +o 𝑢 ) ) | ||
| cnfcom3c.y | ⊢ 𝑌 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑢 ) +o 𝑣 ) ) | ||
| cnfcom3c.n | ⊢ 𝑁 = ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) | ||
| cnfcom3c.l | ⊢ 𝐿 = ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 ) | ||
| Assertion | cnfcom3clem | ⊢ ( 𝐴 ∈ On → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom3c.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| 2 | cnfcom3c.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝑏 ) | |
| 3 | cnfcom3c.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 4 | cnfcom3c.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | |
| 5 | cnfcom3c.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | |
| 6 | cnfcom3c.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 7 | cnfcom3c.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | |
| 8 | cnfcom3c.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | |
| 9 | cnfcom3c.x | ⊢ 𝑋 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( 𝐹 ‘ 𝑊 ) ·o 𝑣 ) +o 𝑢 ) ) | |
| 10 | cnfcom3c.y | ⊢ 𝑌 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑢 ) +o 𝑣 ) ) | |
| 11 | cnfcom3c.n | ⊢ 𝑁 = ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) | |
| 12 | cnfcom3c.l | ⊢ 𝐿 = ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 ) | |
| 13 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝐴 ∈ On ) | |
| 14 | omelon | ⊢ ω ∈ On | |
| 15 | 1onn | ⊢ 1o ∈ ω | |
| 16 | ondif2 | ⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) | |
| 17 | 14 15 16 | mpbir2an | ⊢ ω ∈ ( On ∖ 2o ) |
| 18 | oeworde | ⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 𝐴 ⊆ ( ω ↑o 𝐴 ) ) | |
| 19 | 17 13 18 | sylancr | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝐴 ⊆ ( ω ↑o 𝐴 ) ) |
| 20 | simp2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑏 ∈ 𝐴 ) | |
| 21 | 19 20 | sseldd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑏 ∈ ( ω ↑o 𝐴 ) ) |
| 22 | simp3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ω ⊆ 𝑏 ) | |
| 23 | 1 13 21 2 3 4 5 6 7 8 22 | cnfcom3lem | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑊 ∈ ( On ∖ 1o ) ) |
| 24 | 1 13 21 2 3 4 5 6 7 8 22 9 10 11 | cnfcom3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 25 | f1of | ⊢ ( 𝑁 : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) → 𝑁 : 𝑏 ⟶ ( ω ↑o 𝑊 ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 : 𝑏 ⟶ ( ω ↑o 𝑊 ) ) |
| 27 | 26 20 | fexd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 ∈ V ) |
| 28 | 12 | fvmpt2 | ⊢ ( ( 𝑏 ∈ ( ω ↑o 𝐴 ) ∧ 𝑁 ∈ V ) → ( 𝐿 ‘ 𝑏 ) = 𝑁 ) |
| 29 | 21 27 28 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ( 𝐿 ‘ 𝑏 ) = 𝑁 ) |
| 30 | 29 | f1oeq1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ( ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ 𝑁 : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| 31 | 24 30 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 32 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( ω ↑o 𝑤 ) = ( ω ↑o 𝑊 ) ) | |
| 33 | 32 | f1oeq3d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| 34 | 33 | rspcev | ⊢ ( ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) |
| 35 | 23 31 34 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) |
| 36 | 35 | 3expia | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) → ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 37 | 36 | ralrimiva | ⊢ ( 𝐴 ∈ On → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 38 | ovex | ⊢ ( ω ↑o 𝐴 ) ∈ V | |
| 39 | 38 | mptex | ⊢ ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 ) ∈ V |
| 40 | 12 39 | eqeltri | ⊢ 𝐿 ∈ V |
| 41 | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 ) | |
| 42 | 12 41 | nfcxfr | ⊢ Ⅎ 𝑏 𝐿 |
| 43 | 42 | nfeq2 | ⊢ Ⅎ 𝑏 𝑔 = 𝐿 |
| 44 | fveq1 | ⊢ ( 𝑔 = 𝐿 → ( 𝑔 ‘ 𝑏 ) = ( 𝐿 ‘ 𝑏 ) ) | |
| 45 | 44 | f1oeq1d | ⊢ ( 𝑔 = 𝐿 → ( ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 46 | 45 | rexbidv | ⊢ ( 𝑔 = 𝐿 → ( ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 47 | 46 | imbi2d | ⊢ ( 𝑔 = 𝐿 → ( ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ↔ ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ) |
| 48 | 43 47 | ralbid | ⊢ ( 𝑔 = 𝐿 → ( ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ↔ ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ) |
| 49 | 40 48 | spcev | ⊢ ( ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 50 | 37 49 | syl | ⊢ ( 𝐴 ∈ On → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |