This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any infinite ordinal B is equinumerous to a power of _om . (We are being careful here to show explicit bijections rather than simple equinumerosity because we want a uniform construction for cnfcom3c .) (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 4-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | |- S = dom ( _om CNF A ) |
|
| cnfcom.a | |- ( ph -> A e. On ) |
||
| cnfcom.b | |- ( ph -> B e. ( _om ^o A ) ) |
||
| cnfcom.f | |- F = ( `' ( _om CNF A ) ` B ) |
||
| cnfcom.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
||
| cnfcom.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
||
| cnfcom.t | |- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
||
| cnfcom.m | |- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
||
| cnfcom.k | |- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
||
| cnfcom.w | |- W = ( G ` U. dom G ) |
||
| cnfcom3.1 | |- ( ph -> _om C_ B ) |
||
| cnfcom.x | |- X = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( F ` W ) .o v ) +o u ) ) |
||
| cnfcom.y | |- Y = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o u ) +o v ) ) |
||
| cnfcom.n | |- N = ( ( X o. `' Y ) o. ( T ` dom G ) ) |
||
| Assertion | cnfcom3 | |- ( ph -> N : B -1-1-onto-> ( _om ^o W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | |- S = dom ( _om CNF A ) |
|
| 2 | cnfcom.a | |- ( ph -> A e. On ) |
|
| 3 | cnfcom.b | |- ( ph -> B e. ( _om ^o A ) ) |
|
| 4 | cnfcom.f | |- F = ( `' ( _om CNF A ) ` B ) |
|
| 5 | cnfcom.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
|
| 6 | cnfcom.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
|
| 7 | cnfcom.t | |- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
|
| 8 | cnfcom.m | |- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
|
| 9 | cnfcom.k | |- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
|
| 10 | cnfcom.w | |- W = ( G ` U. dom G ) |
|
| 11 | cnfcom3.1 | |- ( ph -> _om C_ B ) |
|
| 12 | cnfcom.x | |- X = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( F ` W ) .o v ) +o u ) ) |
|
| 13 | cnfcom.y | |- Y = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o u ) +o v ) ) |
|
| 14 | cnfcom.n | |- N = ( ( X o. `' Y ) o. ( T ` dom G ) ) |
|
| 15 | omelon | |- _om e. On |
|
| 16 | suppssdm | |- ( F supp (/) ) C_ dom F |
|
| 17 | 15 | a1i | |- ( ph -> _om e. On ) |
| 18 | 1 17 2 | cantnff1o | |- ( ph -> ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) ) |
| 19 | f1ocnv | |- ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) -> `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S ) |
|
| 20 | f1of | |- ( `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) |
|
| 21 | 18 19 20 | 3syl | |- ( ph -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) |
| 22 | 21 3 | ffvelcdmd | |- ( ph -> ( `' ( _om CNF A ) ` B ) e. S ) |
| 23 | 4 22 | eqeltrid | |- ( ph -> F e. S ) |
| 24 | 1 17 2 | cantnfs | |- ( ph -> ( F e. S <-> ( F : A --> _om /\ F finSupp (/) ) ) ) |
| 25 | 23 24 | mpbid | |- ( ph -> ( F : A --> _om /\ F finSupp (/) ) ) |
| 26 | 25 | simpld | |- ( ph -> F : A --> _om ) |
| 27 | 16 26 | fssdm | |- ( ph -> ( F supp (/) ) C_ A ) |
| 28 | ovex | |- ( F supp (/) ) e. _V |
|
| 29 | 5 | oion | |- ( ( F supp (/) ) e. _V -> dom G e. On ) |
| 30 | 28 29 | ax-mp | |- dom G e. On |
| 31 | 30 | elexi | |- dom G e. _V |
| 32 | 31 | uniex | |- U. dom G e. _V |
| 33 | 32 | sucid | |- U. dom G e. suc U. dom G |
| 34 | peano1 | |- (/) e. _om |
|
| 35 | 34 | a1i | |- ( ph -> (/) e. _om ) |
| 36 | 11 35 | sseldd | |- ( ph -> (/) e. B ) |
| 37 | 1 2 3 4 5 6 7 8 9 10 36 | cnfcom2lem | |- ( ph -> dom G = suc U. dom G ) |
| 38 | 33 37 | eleqtrrid | |- ( ph -> U. dom G e. dom G ) |
| 39 | 5 | oif | |- G : dom G --> ( F supp (/) ) |
| 40 | 39 | ffvelcdmi | |- ( U. dom G e. dom G -> ( G ` U. dom G ) e. ( F supp (/) ) ) |
| 41 | 38 40 | syl | |- ( ph -> ( G ` U. dom G ) e. ( F supp (/) ) ) |
| 42 | 10 41 | eqeltrid | |- ( ph -> W e. ( F supp (/) ) ) |
| 43 | 27 42 | sseldd | |- ( ph -> W e. A ) |
| 44 | onelon | |- ( ( A e. On /\ W e. A ) -> W e. On ) |
|
| 45 | 2 43 44 | syl2anc | |- ( ph -> W e. On ) |
| 46 | oecl | |- ( ( _om e. On /\ W e. On ) -> ( _om ^o W ) e. On ) |
|
| 47 | 15 45 46 | sylancr | |- ( ph -> ( _om ^o W ) e. On ) |
| 48 | 26 43 | ffvelcdmd | |- ( ph -> ( F ` W ) e. _om ) |
| 49 | nnon | |- ( ( F ` W ) e. _om -> ( F ` W ) e. On ) |
|
| 50 | 48 49 | syl | |- ( ph -> ( F ` W ) e. On ) |
| 51 | 13 12 | omf1o | |- ( ( ( _om ^o W ) e. On /\ ( F ` W ) e. On ) -> ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( ( F ` W ) .o ( _om ^o W ) ) ) |
| 52 | 47 50 51 | syl2anc | |- ( ph -> ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( ( F ` W ) .o ( _om ^o W ) ) ) |
| 53 | 26 | ffnd | |- ( ph -> F Fn A ) |
| 54 | 0ex | |- (/) e. _V |
|
| 55 | 54 | a1i | |- ( ph -> (/) e. _V ) |
| 56 | elsuppfn | |- ( ( F Fn A /\ A e. On /\ (/) e. _V ) -> ( W e. ( F supp (/) ) <-> ( W e. A /\ ( F ` W ) =/= (/) ) ) ) |
|
| 57 | 53 2 55 56 | syl3anc | |- ( ph -> ( W e. ( F supp (/) ) <-> ( W e. A /\ ( F ` W ) =/= (/) ) ) ) |
| 58 | simpr | |- ( ( W e. A /\ ( F ` W ) =/= (/) ) -> ( F ` W ) =/= (/) ) |
|
| 59 | 57 58 | biimtrdi | |- ( ph -> ( W e. ( F supp (/) ) -> ( F ` W ) =/= (/) ) ) |
| 60 | 42 59 | mpd | |- ( ph -> ( F ` W ) =/= (/) ) |
| 61 | on0eln0 | |- ( ( F ` W ) e. On -> ( (/) e. ( F ` W ) <-> ( F ` W ) =/= (/) ) ) |
|
| 62 | 48 49 61 | 3syl | |- ( ph -> ( (/) e. ( F ` W ) <-> ( F ` W ) =/= (/) ) ) |
| 63 | 60 62 | mpbird | |- ( ph -> (/) e. ( F ` W ) ) |
| 64 | 1 2 3 4 5 6 7 8 9 10 11 | cnfcom3lem | |- ( ph -> W e. ( On \ 1o ) ) |
| 65 | ondif1 | |- ( W e. ( On \ 1o ) <-> ( W e. On /\ (/) e. W ) ) |
|
| 66 | 65 | simprbi | |- ( W e. ( On \ 1o ) -> (/) e. W ) |
| 67 | 64 66 | syl | |- ( ph -> (/) e. W ) |
| 68 | omabs | |- ( ( ( ( F ` W ) e. _om /\ (/) e. ( F ` W ) ) /\ ( W e. On /\ (/) e. W ) ) -> ( ( F ` W ) .o ( _om ^o W ) ) = ( _om ^o W ) ) |
|
| 69 | 48 63 45 67 68 | syl22anc | |- ( ph -> ( ( F ` W ) .o ( _om ^o W ) ) = ( _om ^o W ) ) |
| 70 | 69 | f1oeq3d | |- ( ph -> ( ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( ( F ` W ) .o ( _om ^o W ) ) <-> ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( _om ^o W ) ) ) |
| 71 | 52 70 | mpbid | |- ( ph -> ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( _om ^o W ) ) |
| 72 | 1 2 3 4 5 6 7 8 9 10 36 | cnfcom2 | |- ( ph -> ( T ` dom G ) : B -1-1-onto-> ( ( _om ^o W ) .o ( F ` W ) ) ) |
| 73 | f1oco | |- ( ( ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( _om ^o W ) /\ ( T ` dom G ) : B -1-1-onto-> ( ( _om ^o W ) .o ( F ` W ) ) ) -> ( ( X o. `' Y ) o. ( T ` dom G ) ) : B -1-1-onto-> ( _om ^o W ) ) |
|
| 74 | 71 72 73 | syl2anc | |- ( ph -> ( ( X o. `' Y ) o. ( T ` dom G ) ) : B -1-1-onto-> ( _om ^o W ) ) |
| 75 | f1oeq1 | |- ( N = ( ( X o. `' Y ) o. ( T ` dom G ) ) -> ( N : B -1-1-onto-> ( _om ^o W ) <-> ( ( X o. `' Y ) o. ( T ` dom G ) ) : B -1-1-onto-> ( _om ^o W ) ) ) |
|
| 76 | 14 75 | ax-mp | |- ( N : B -1-1-onto-> ( _om ^o W ) <-> ( ( X o. `' Y ) o. ( T ` dom G ) ) : B -1-1-onto-> ( _om ^o W ) ) |
| 77 | 74 76 | sylibr | |- ( ph -> N : B -1-1-onto-> ( _om ^o W ) ) |