This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnfcom3 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | ||
| cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | ||
| cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | ||
| cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | ||
| cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | ||
| cnfcom.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | ||
| cnfcom3.1 | ⊢ ( 𝜑 → ω ⊆ 𝐵 ) | ||
| Assertion | cnfcom3lem | ⊢ ( 𝜑 → 𝑊 ∈ ( On ∖ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| 2 | cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | |
| 4 | cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | |
| 5 | cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 6 | cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | |
| 7 | cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | |
| 8 | cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 9 | cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | |
| 10 | cnfcom.w | ⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) | |
| 11 | cnfcom3.1 | ⊢ ( 𝜑 → ω ⊆ 𝐵 ) | |
| 12 | suppssdm | ⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 | |
| 13 | omelon | ⊢ ω ∈ On | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ω ∈ On ) |
| 15 | 1 14 2 | cantnff1o | ⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
| 16 | f1ocnv | ⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) | |
| 17 | f1of | ⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) | |
| 18 | 15 16 17 | 3syl | ⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
| 19 | 18 3 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
| 20 | 4 19 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 21 | 1 14 2 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 22 | 20 21 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
| 24 | 12 23 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
| 25 | ovex | ⊢ ( 𝐹 supp ∅ ) ∈ V | |
| 26 | 5 | oion | ⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On ) |
| 27 | 25 26 | ax-mp | ⊢ dom 𝐺 ∈ On |
| 28 | 27 | elexi | ⊢ dom 𝐺 ∈ V |
| 29 | 28 | uniex | ⊢ ∪ dom 𝐺 ∈ V |
| 30 | 29 | sucid | ⊢ ∪ dom 𝐺 ∈ suc ∪ dom 𝐺 |
| 31 | peano1 | ⊢ ∅ ∈ ω | |
| 32 | 31 | a1i | ⊢ ( 𝜑 → ∅ ∈ ω ) |
| 33 | 11 32 | sseldd | ⊢ ( 𝜑 → ∅ ∈ 𝐵 ) |
| 34 | 1 2 3 4 5 6 7 8 9 10 33 | cnfcom2lem | ⊢ ( 𝜑 → dom 𝐺 = suc ∪ dom 𝐺 ) |
| 35 | 30 34 | eleqtrrid | ⊢ ( 𝜑 → ∪ dom 𝐺 ∈ dom 𝐺 ) |
| 36 | 5 | oif | ⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
| 37 | 36 | ffvelcdmi | ⊢ ( ∪ dom 𝐺 ∈ dom 𝐺 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ ( 𝐹 supp ∅ ) ) |
| 38 | 35 37 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ ( 𝐹 supp ∅ ) ) |
| 39 | 24 38 | sseldd | ⊢ ( 𝜑 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ 𝐴 ) |
| 40 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ 𝐴 ) → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ On ) | |
| 41 | 2 39 40 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ On ) |
| 42 | 10 41 | eqeltrid | ⊢ ( 𝜑 → 𝑊 ∈ On ) |
| 43 | oecl | ⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ( ω ↑o 𝐴 ) ∈ On ) | |
| 44 | 13 2 43 | sylancr | ⊢ ( 𝜑 → ( ω ↑o 𝐴 ) ∈ On ) |
| 45 | onelon | ⊢ ( ( ( ω ↑o 𝐴 ) ∈ On ∧ 𝐵 ∈ ( ω ↑o 𝐴 ) ) → 𝐵 ∈ On ) | |
| 46 | 44 3 45 | syl2anc | ⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 47 | ontri1 | ⊢ ( ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω ) ) | |
| 48 | 13 46 47 | sylancr | ⊢ ( 𝜑 → ( ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω ) ) |
| 49 | 11 48 | mpbid | ⊢ ( 𝜑 → ¬ 𝐵 ∈ ω ) |
| 50 | 4 | fveq2i | ⊢ ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) |
| 51 | f1ocnvfv2 | ⊢ ( ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ∧ 𝐵 ∈ ( ω ↑o 𝐴 ) ) → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) | |
| 52 | 15 3 51 | syl2anc | ⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) |
| 53 | 50 52 | eqtrid | ⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = 𝐵 ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = 𝐵 ) |
| 55 | 13 | a1i | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ω ∈ On ) |
| 56 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐴 ∈ On ) |
| 57 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 ∈ 𝑆 ) |
| 58 | 31 | a1i | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ∅ ∈ ω ) |
| 59 | 1on | ⊢ 1o ∈ On | |
| 60 | 59 | a1i | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 1o ∈ On ) |
| 61 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 62 | 1 14 2 5 20 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 63 | 62 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 64 | 5 | oiiso | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 65 | 61 63 64 | syl2anc | ⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 66 | 65 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 67 | isof1o | ⊢ ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) | |
| 68 | 66 67 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
| 69 | f1ocnv | ⊢ ( 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) → ◡ 𝐺 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝐺 ) | |
| 70 | f1of | ⊢ ( ◡ 𝐺 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝐺 → ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ) | |
| 71 | 68 69 70 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ) |
| 72 | ffvelcdm | ⊢ ( ( ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 ) | |
| 73 | 71 72 | sylancom | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 ) |
| 74 | elssuni | ⊢ ( ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 → ( ◡ 𝐺 ‘ 𝑥 ) ⊆ ∪ dom 𝐺 ) | |
| 75 | 73 74 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ◡ 𝐺 ‘ 𝑥 ) ⊆ ∪ dom 𝐺 ) |
| 76 | onelon | ⊢ ( ( dom 𝐺 ∈ On ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ On ) | |
| 77 | 27 73 76 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ On ) |
| 78 | onuni | ⊢ ( dom 𝐺 ∈ On → ∪ dom 𝐺 ∈ On ) | |
| 79 | 27 78 | ax-mp | ⊢ ∪ dom 𝐺 ∈ On |
| 80 | ontri1 | ⊢ ( ( ( ◡ 𝐺 ‘ 𝑥 ) ∈ On ∧ ∪ dom 𝐺 ∈ On ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ⊆ ∪ dom 𝐺 ↔ ¬ ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ) ) | |
| 81 | 77 79 80 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ⊆ ∪ dom 𝐺 ↔ ¬ ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 82 | 75 81 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ¬ ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ) |
| 83 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ∪ dom 𝐺 ∈ dom 𝐺 ) |
| 84 | isorel | ⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( ∪ dom 𝐺 ∈ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 ) ) → ( ∪ dom 𝐺 E ( ◡ 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ ∪ dom 𝐺 ) E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) | |
| 85 | 66 83 73 84 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ∪ dom 𝐺 E ( ◡ 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ ∪ dom 𝐺 ) E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 86 | fvex | ⊢ ( ◡ 𝐺 ‘ 𝑥 ) ∈ V | |
| 87 | 86 | epeli | ⊢ ( ∪ dom 𝐺 E ( ◡ 𝐺 ‘ 𝑥 ) ↔ ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ) |
| 88 | 10 | breq1i | ⊢ ( 𝑊 E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐺 ‘ ∪ dom 𝐺 ) E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 89 | fvex | ⊢ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ V | |
| 90 | 89 | epeli | ⊢ ( 𝑊 E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ 𝑊 ∈ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 91 | 88 90 | bitr3i | ⊢ ( ( 𝐺 ‘ ∪ dom 𝐺 ) E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ 𝑊 ∈ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
| 92 | 85 87 91 | 3bitr3g | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ↔ 𝑊 ∈ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
| 93 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝑊 = ∅ ) | |
| 94 | f1ocnvfv2 | ⊢ ( ( 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = 𝑥 ) | |
| 95 | 68 94 | sylancom | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = 𝑥 ) |
| 96 | 93 95 | eleq12d | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( 𝑊 ∈ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ ∅ ∈ 𝑥 ) ) |
| 97 | 92 96 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ↔ ∅ ∈ 𝑥 ) ) |
| 98 | 82 97 | mtbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ¬ ∅ ∈ 𝑥 ) |
| 99 | onss | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) | |
| 100 | 2 99 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ On ) |
| 101 | 24 100 | sstrd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
| 102 | 101 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐹 supp ∅ ) ⊆ On ) |
| 103 | 102 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝑥 ∈ On ) |
| 104 | on0eqel | ⊢ ( 𝑥 ∈ On → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) | |
| 105 | 103 104 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) |
| 106 | 105 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ¬ 𝑥 = ∅ → ∅ ∈ 𝑥 ) ) |
| 107 | 98 106 | mt3d | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝑥 = ∅ ) |
| 108 | el1o | ⊢ ( 𝑥 ∈ 1o ↔ 𝑥 = ∅ ) | |
| 109 | 107 108 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝑥 ∈ 1o ) |
| 110 | 109 | ex | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝑥 ∈ ( 𝐹 supp ∅ ) → 𝑥 ∈ 1o ) ) |
| 111 | 110 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐹 supp ∅ ) ⊆ 1o ) |
| 112 | 1 55 56 57 58 60 111 | cantnflt2 | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) ∈ ( ω ↑o 1o ) ) |
| 113 | oe1 | ⊢ ( ω ∈ On → ( ω ↑o 1o ) = ω ) | |
| 114 | 13 113 | ax-mp | ⊢ ( ω ↑o 1o ) = ω |
| 115 | 112 114 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) ∈ ω ) |
| 116 | 54 115 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐵 ∈ ω ) |
| 117 | 116 | ex | ⊢ ( 𝜑 → ( 𝑊 = ∅ → 𝐵 ∈ ω ) ) |
| 118 | 117 | necon3bd | ⊢ ( 𝜑 → ( ¬ 𝐵 ∈ ω → 𝑊 ≠ ∅ ) ) |
| 119 | 49 118 | mpd | ⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
| 120 | dif1o | ⊢ ( 𝑊 ∈ ( On ∖ 1o ) ↔ ( 𝑊 ∈ On ∧ 𝑊 ≠ ∅ ) ) | |
| 121 | 42 119 120 | sylanbrc | ⊢ ( 𝜑 → 𝑊 ∈ ( On ∖ 1o ) ) |