This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neitr.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | neitr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) = ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neitr.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | nfv | ⊢ Ⅎ 𝑑 ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) | |
| 3 | nfv | ⊢ Ⅎ 𝑑 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) | |
| 4 | nfre1 | ⊢ Ⅎ 𝑑 ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) | |
| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑑 ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
| 6 | 2 5 | nfan | ⊢ Ⅎ 𝑑 ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) |
| 7 | simpl | ⊢ ( ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) | |
| 8 | 7 | anim2i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) → ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ) |
| 9 | simp-5r | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) | |
| 10 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐽 ∈ Top ) | |
| 11 | simp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ⊆ 𝑋 ) | |
| 12 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 14 | 13 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 15 | 9 14 | sseqtrrd | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑐 ⊆ 𝐴 ) |
| 16 | 11 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐴 ⊆ 𝑋 ) |
| 17 | 15 16 | sstrd | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑐 ⊆ 𝑋 ) |
| 18 | 10 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐽 ∈ Top ) |
| 19 | simplr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑒 ∈ 𝐽 ) | |
| 20 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑒 ∈ 𝐽 ) → 𝑒 ⊆ 𝑋 ) |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑒 ⊆ 𝑋 ) |
| 22 | 21 | ssdifssd | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ( 𝑒 ∖ 𝐴 ) ⊆ 𝑋 ) |
| 23 | 17 22 | unssd | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ) |
| 24 | simpr1l | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ∧ 𝑒 ∈ 𝐽 ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) ) → 𝐵 ⊆ 𝑑 ) | |
| 25 | 24 | 3anassrs | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐵 ⊆ 𝑑 ) |
| 26 | simpr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑑 = ( 𝑒 ∩ 𝐴 ) ) | |
| 27 | 25 26 | sseqtrd | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐵 ⊆ ( 𝑒 ∩ 𝐴 ) ) |
| 28 | inss1 | ⊢ ( 𝑒 ∩ 𝐴 ) ⊆ 𝑒 | |
| 29 | 27 28 | sstrdi | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐵 ⊆ 𝑒 ) |
| 30 | inundif | ⊢ ( ( 𝑒 ∩ 𝐴 ) ∪ ( 𝑒 ∖ 𝐴 ) ) = 𝑒 | |
| 31 | simpr1r | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ∧ 𝑒 ∈ 𝐽 ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) ) → 𝑑 ⊆ 𝑐 ) | |
| 32 | 31 | 3anassrs | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑑 ⊆ 𝑐 ) |
| 33 | 26 32 | eqsstrrd | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ( 𝑒 ∩ 𝐴 ) ⊆ 𝑐 ) |
| 34 | unss1 | ⊢ ( ( 𝑒 ∩ 𝐴 ) ⊆ 𝑐 → ( ( 𝑒 ∩ 𝐴 ) ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ( ( 𝑒 ∩ 𝐴 ) ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) |
| 36 | 30 35 | eqsstrrid | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑒 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) |
| 37 | sseq2 | ⊢ ( 𝑏 = 𝑒 → ( 𝐵 ⊆ 𝑏 ↔ 𝐵 ⊆ 𝑒 ) ) | |
| 38 | sseq1 | ⊢ ( 𝑏 = 𝑒 → ( 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ↔ 𝑒 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) | |
| 39 | 37 38 | anbi12d | ⊢ ( 𝑏 = 𝑒 → ( ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ↔ ( 𝐵 ⊆ 𝑒 ∧ 𝑒 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ) |
| 40 | 39 | rspcev | ⊢ ( ( 𝑒 ∈ 𝐽 ∧ ( 𝐵 ⊆ 𝑒 ∧ 𝑒 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) → ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) |
| 41 | 19 29 36 40 | syl12anc | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) |
| 42 | indir | ⊢ ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) = ( ( 𝑐 ∩ 𝐴 ) ∪ ( ( 𝑒 ∖ 𝐴 ) ∩ 𝐴 ) ) | |
| 43 | disjdifr | ⊢ ( ( 𝑒 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ | |
| 44 | 43 | uneq2i | ⊢ ( ( 𝑐 ∩ 𝐴 ) ∪ ( ( 𝑒 ∖ 𝐴 ) ∩ 𝐴 ) ) = ( ( 𝑐 ∩ 𝐴 ) ∪ ∅ ) |
| 45 | un0 | ⊢ ( ( 𝑐 ∩ 𝐴 ) ∪ ∅ ) = ( 𝑐 ∩ 𝐴 ) | |
| 46 | 42 44 45 | 3eqtri | ⊢ ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) = ( 𝑐 ∩ 𝐴 ) |
| 47 | dfss2 | ⊢ ( 𝑐 ⊆ 𝐴 ↔ ( 𝑐 ∩ 𝐴 ) = 𝑐 ) | |
| 48 | 47 | biimpi | ⊢ ( 𝑐 ⊆ 𝐴 → ( 𝑐 ∩ 𝐴 ) = 𝑐 ) |
| 49 | 46 48 | eqtr2id | ⊢ ( 𝑐 ⊆ 𝐴 → 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) |
| 50 | 15 49 | syl | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) |
| 51 | vex | ⊢ 𝑐 ∈ V | |
| 52 | vex | ⊢ 𝑒 ∈ V | |
| 53 | 52 | difexi | ⊢ ( 𝑒 ∖ 𝐴 ) ∈ V |
| 54 | 51 53 | unex | ⊢ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∈ V |
| 55 | sseq1 | ⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( 𝑎 ⊆ 𝑋 ↔ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ) ) | |
| 56 | sseq2 | ⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( 𝑏 ⊆ 𝑎 ↔ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) | |
| 57 | 56 | anbi2d | ⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ↔ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ) |
| 58 | 57 | rexbidv | ⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ↔ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ) |
| 59 | 55 58 | anbi12d | ⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ↔ ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ) ) |
| 60 | ineq1 | ⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( 𝑎 ∩ 𝐴 ) = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) | |
| 61 | 60 | eqeq2d | ⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( 𝑐 = ( 𝑎 ∩ 𝐴 ) ↔ 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) ) |
| 62 | 59 61 | anbi12d | ⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ↔ ( ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ∧ 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) ) ) |
| 63 | 54 62 | spcev | ⊢ ( ( ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ∧ 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 64 | 23 41 50 63 | syl21anc | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 65 | 10 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → 𝐽 ∈ Top ) |
| 66 | 10 | uniexd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ∪ 𝐽 ∈ V ) |
| 67 | 1 66 | eqeltrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝑋 ∈ V ) |
| 68 | 67 11 | ssexd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ∈ V ) |
| 69 | 68 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → 𝐴 ∈ V ) |
| 70 | simplr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) | |
| 71 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑒 ∈ 𝐽 𝑑 = ( 𝑒 ∩ 𝐴 ) ) ) | |
| 72 | 71 | biimpa | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) → ∃ 𝑒 ∈ 𝐽 𝑑 = ( 𝑒 ∩ 𝐴 ) ) |
| 73 | 65 69 70 72 | syl21anc | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → ∃ 𝑒 ∈ 𝐽 𝑑 = ( 𝑒 ∩ 𝐴 ) ) |
| 74 | 64 73 | r19.29a | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 75 | 8 74 | sylanl1 | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 76 | simprr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) → ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) | |
| 77 | 6 75 76 | r19.29af | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 78 | inss2 | ⊢ ( 𝑎 ∩ 𝐴 ) ⊆ 𝐴 | |
| 79 | sseq1 | ⊢ ( 𝑐 = ( 𝑎 ∩ 𝐴 ) → ( 𝑐 ⊆ 𝐴 ↔ ( 𝑎 ∩ 𝐴 ) ⊆ 𝐴 ) ) | |
| 80 | 78 79 | mpbiri | ⊢ ( 𝑐 = ( 𝑎 ∩ 𝐴 ) → 𝑐 ⊆ 𝐴 ) |
| 81 | 80 | adantl | ⊢ ( ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → 𝑐 ⊆ 𝐴 ) |
| 82 | 81 | exlimiv | ⊢ ( ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → 𝑐 ⊆ 𝐴 ) |
| 83 | 82 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → 𝑐 ⊆ 𝐴 ) |
| 84 | 13 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 85 | 83 84 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 86 | 10 | ad4antr | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐽 ∈ Top ) |
| 87 | 68 | ad4antr | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐴 ∈ V ) |
| 88 | simplr | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝑏 ∈ 𝐽 ) | |
| 89 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝑏 ∈ 𝐽 ) → ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) | |
| 90 | 86 87 88 89 | syl3anc | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
| 91 | simprl | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐵 ⊆ 𝑏 ) | |
| 92 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | |
| 93 | 92 | ad4antr | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐵 ⊆ 𝐴 ) |
| 94 | 91 93 | ssind | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ) |
| 95 | simprr | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝑏 ⊆ 𝑎 ) | |
| 96 | 95 | ssrind | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → ( 𝑏 ∩ 𝐴 ) ⊆ ( 𝑎 ∩ 𝐴 ) ) |
| 97 | simp-4r | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝑐 = ( 𝑎 ∩ 𝐴 ) ) | |
| 98 | 96 97 | sseqtrrd | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) |
| 99 | 90 94 98 | jca32 | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
| 100 | 99 | ex | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) → ( ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) ) |
| 101 | 100 | reximdva | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) → ( ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) ) |
| 102 | 101 | impr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
| 103 | 102 | an32s | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
| 104 | 103 | expl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) ) |
| 105 | 104 | exlimdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) ) |
| 106 | 105 | imp | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
| 107 | sseq2 | ⊢ ( 𝑑 = ( 𝑏 ∩ 𝐴 ) → ( 𝐵 ⊆ 𝑑 ↔ 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ) ) | |
| 108 | sseq1 | ⊢ ( 𝑑 = ( 𝑏 ∩ 𝐴 ) → ( 𝑑 ⊆ 𝑐 ↔ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) | |
| 109 | 107 108 | anbi12d | ⊢ ( 𝑑 = ( 𝑏 ∩ 𝐴 ) → ( ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ↔ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
| 110 | 109 | rspcev | ⊢ ( ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) → ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
| 111 | 110 | rexlimivw | ⊢ ( ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) → ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
| 112 | 106 111 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
| 113 | 85 112 | jca | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) |
| 114 | 77 113 | impbida | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
| 115 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) | |
| 116 | 10 68 115 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 117 | 92 13 | sseqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 118 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) | |
| 119 | 118 | isnei | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ 𝐵 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) → ( 𝑐 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) ↔ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) ) |
| 120 | 116 117 119 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) ↔ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) ) |
| 121 | fvex | ⊢ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∈ V | |
| 122 | restval | ⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∈ V ∧ 𝐴 ∈ V ) → ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) = ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ) | |
| 123 | 121 68 122 | sylancr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) = ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ) |
| 124 | 123 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ↔ 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ) ) |
| 125 | 92 11 | sstrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝑋 ) |
| 126 | eqid | ⊢ ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) = ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) | |
| 127 | 126 | elrnmpt | ⊢ ( 𝑐 ∈ V → ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 128 | 127 | elv | ⊢ ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) 𝑐 = ( 𝑎 ∩ 𝐴 ) ) |
| 129 | df-rex | ⊢ ( ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) 𝑐 = ( 𝑎 ∩ 𝐴 ) ↔ ∃ 𝑎 ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) | |
| 130 | 128 129 | bitri | ⊢ ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 131 | 1 | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↔ ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) ) |
| 132 | 131 | anbi1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ↔ ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
| 133 | 132 | exbidv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ∃ 𝑎 ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
| 134 | 130 133 | bitrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
| 135 | 10 125 134 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
| 136 | 124 135 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
| 137 | 114 120 136 | 3bitr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) ↔ 𝑐 ∈ ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 138 | 137 | eqrdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) = ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ) |