This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 4-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1eqsn | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o ) → 𝐵 = { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 | ⊢ ( 𝐵 ≈ 1o ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) | |
| 2 | eleq2 | ⊢ ( 𝐵 = { 𝑥 } → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ { 𝑥 } ) ) | |
| 3 | elsni | ⊢ ( 𝐴 ∈ { 𝑥 } → 𝐴 = 𝑥 ) | |
| 4 | 3 | sneqd | ⊢ ( 𝐴 ∈ { 𝑥 } → { 𝐴 } = { 𝑥 } ) |
| 5 | 2 4 | biimtrdi | ⊢ ( 𝐵 = { 𝑥 } → ( 𝐴 ∈ 𝐵 → { 𝐴 } = { 𝑥 } ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝐵 = { 𝑥 } ∧ 𝐴 ∈ 𝐵 ) → { 𝐴 } = { 𝑥 } ) |
| 7 | eqtr3 | ⊢ ( ( 𝐵 = { 𝑥 } ∧ { 𝐴 } = { 𝑥 } ) → 𝐵 = { 𝐴 } ) | |
| 8 | 6 7 | syldan | ⊢ ( ( 𝐵 = { 𝑥 } ∧ 𝐴 ∈ 𝐵 ) → 𝐵 = { 𝐴 } ) |
| 9 | 8 | ex | ⊢ ( 𝐵 = { 𝑥 } → ( 𝐴 ∈ 𝐵 → 𝐵 = { 𝐴 } ) ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → ( 𝐴 ∈ 𝐵 → 𝐵 = { 𝐴 } ) ) |
| 11 | 1 10 | sylbi | ⊢ ( 𝐵 ≈ 1o → ( 𝐴 ∈ 𝐵 → 𝐵 = { 𝐴 } ) ) |
| 12 | 11 | impcom | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o ) → 𝐵 = { 𝐴 } ) |