This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: F and its extension by continuity agree on the domain of F . (Contributed by Thierry Arnoux, 29-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextfres.c | ⊢ 𝐶 = ∪ 𝐽 | |
| cnextfres.b | ⊢ 𝐵 = ∪ 𝐾 | ||
| cnextfres.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| cnextfres.k | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | ||
| cnextfres.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | ||
| cnextfres.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) | ||
| cnextfres.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| Assertion | cnextfres | ⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfres.c | ⊢ 𝐶 = ∪ 𝐽 | |
| 2 | cnextfres.b | ⊢ 𝐵 = ∪ 𝐾 | |
| 3 | cnextfres.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 4 | cnextfres.k | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | |
| 5 | cnextfres.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | |
| 6 | cnextfres.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) | |
| 7 | cnextfres.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) | |
| 9 | 8 2 | cnf | ⊢ ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) → 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) |
| 11 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 12 | 3 5 11 | syl2anc | ⊢ ( 𝜑 → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 13 | 12 | feq2d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) ) |
| 14 | 10 13 | mpbird | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 15 | 1 2 | cnextfun | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Haus ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 16 | 3 4 14 5 15 | syl22anc | ⊢ ( 𝜑 → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 17 | 1 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ) → 𝐴 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 18 | 3 5 17 | syl2anc | ⊢ ( 𝜑 → 𝐴 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 19 | 18 7 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 20 | 1 2 3 5 6 7 | flfcntr | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 21 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑥 = 𝑋 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) |
| 24 | 23 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ) |
| 25 | 24 | fveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 26 | 25 | opeliunxp2 | ⊢ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 27 | 19 20 26 | sylanbrc | ⊢ ( 𝜑 → 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 28 | haustop | ⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) | |
| 29 | 4 28 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 30 | 1 2 | cnextfval | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 31 | 3 29 14 5 30 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 32 | 27 31 | eleqtrrd | ⊢ ( 𝜑 → 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 33 | df-br | ⊢ ( 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ( 𝐹 ‘ 𝑋 ) ↔ 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) | |
| 34 | 32 33 | sylibr | ⊢ ( 𝜑 → 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ( 𝐹 ‘ 𝑋 ) ) |
| 35 | funbrfv | ⊢ ( Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) → ( 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ( 𝐹 ‘ 𝑋 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) | |
| 36 | 16 34 35 | sylc | ⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |