This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Order-preserving property of set exponentiation. Theorem 6L(d) of Enderton p. 149. (Contributed by NM, 23-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdom2 | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → 𝐶 = ∅ ) | |
| 2 | 1 | oveq1d | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐶 ↑m 𝐴 ) = ( ∅ ↑m 𝐴 ) ) |
| 3 | simplr | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) | |
| 4 | idd | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐴 = ∅ → 𝐴 = ∅ ) ) | |
| 5 | 4 1 | jctird | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐴 = ∅ → ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ) |
| 6 | 3 5 | mtod | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ¬ 𝐴 = ∅ ) |
| 7 | 6 | neqned | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → 𝐴 ≠ ∅ ) |
| 8 | map0b | ⊢ ( 𝐴 ≠ ∅ → ( ∅ ↑m 𝐴 ) = ∅ ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( ∅ ↑m 𝐴 ) = ∅ ) |
| 10 | 2 9 | eqtrd | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐶 ↑m 𝐴 ) = ∅ ) |
| 11 | ovex | ⊢ ( 𝐶 ↑m 𝐵 ) ∈ V | |
| 12 | 11 | 0dom | ⊢ ∅ ≼ ( 𝐶 ↑m 𝐵 ) |
| 13 | 10 12 | eqbrtrdi | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| 14 | simpll | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → 𝐴 ≼ 𝐵 ) | |
| 15 | reldom | ⊢ Rel ≼ | |
| 16 | 15 | brrelex2i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → 𝐵 ∈ V ) |
| 18 | domeng | ⊢ ( 𝐵 ∈ V → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 20 | 14 19 | mpbid | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 21 | enrefg | ⊢ ( 𝐶 ∈ V → 𝐶 ≈ 𝐶 ) | |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐶 ≈ 𝐶 ) |
| 23 | simprrl | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐴 ≈ 𝑥 ) | |
| 24 | mapen | ⊢ ( ( 𝐶 ≈ 𝐶 ∧ 𝐴 ≈ 𝑥 ) → ( 𝐶 ↑m 𝐴 ) ≈ ( 𝐶 ↑m 𝑥 ) ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝐴 ) ≈ ( 𝐶 ↑m 𝑥 ) ) |
| 26 | ovexd | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝑥 ) ∈ V ) | |
| 27 | ovexd | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ∈ V ) | |
| 28 | simprl | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐶 ≠ ∅ ) | |
| 29 | simplr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐶 ∈ V ) | |
| 30 | 16 | ad2antrr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐵 ∈ V ) |
| 31 | 30 | difexd | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐵 ∖ 𝑥 ) ∈ V ) |
| 32 | map0g | ⊢ ( ( 𝐶 ∈ V ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ) → ( ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) = ∅ ↔ ( 𝐶 = ∅ ∧ ( 𝐵 ∖ 𝑥 ) ≠ ∅ ) ) ) | |
| 33 | simpl | ⊢ ( ( 𝐶 = ∅ ∧ ( 𝐵 ∖ 𝑥 ) ≠ ∅ ) → 𝐶 = ∅ ) | |
| 34 | 32 33 | biimtrdi | ⊢ ( ( 𝐶 ∈ V ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ) → ( ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) = ∅ → 𝐶 = ∅ ) ) |
| 35 | 34 | necon3d | ⊢ ( ( 𝐶 ∈ V ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ) → ( 𝐶 ≠ ∅ → ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ≠ ∅ ) ) |
| 36 | 29 31 35 | syl2anc | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ≠ ∅ → ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ≠ ∅ ) ) |
| 37 | 28 36 | mpd | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ≠ ∅ ) |
| 38 | xpdom3 | ⊢ ( ( ( 𝐶 ↑m 𝑥 ) ∈ V ∧ ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ∈ V ∧ ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ≠ ∅ ) → ( 𝐶 ↑m 𝑥 ) ≼ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ) | |
| 39 | 26 27 37 38 | syl3anc | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝑥 ) ≼ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ) |
| 40 | vex | ⊢ 𝑥 ∈ V | |
| 41 | 40 | a1i | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝑥 ∈ V ) |
| 42 | disjdif | ⊢ ( 𝑥 ∩ ( 𝐵 ∖ 𝑥 ) ) = ∅ | |
| 43 | 42 | a1i | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝑥 ∩ ( 𝐵 ∖ 𝑥 ) ) = ∅ ) |
| 44 | mapunen | ⊢ ( ( ( 𝑥 ∈ V ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝑥 ∩ ( 𝐵 ∖ 𝑥 ) ) = ∅ ) → ( 𝐶 ↑m ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ) | |
| 45 | 41 31 29 43 44 | syl31anc | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ) |
| 46 | 45 | ensymd | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( 𝐶 ↑m ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) ) ) |
| 47 | simprrr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝑥 ⊆ 𝐵 ) | |
| 48 | undif | ⊢ ( 𝑥 ⊆ 𝐵 ↔ ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) = 𝐵 ) | |
| 49 | 47 48 | sylib | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) = 𝐵 ) |
| 50 | 49 | oveq2d | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) ) = ( 𝐶 ↑m 𝐵 ) ) |
| 51 | 46 50 | breqtrd | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( 𝐶 ↑m 𝐵 ) ) |
| 52 | domentr | ⊢ ( ( ( 𝐶 ↑m 𝑥 ) ≼ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ∧ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( 𝐶 ↑m 𝐵 ) ) → ( 𝐶 ↑m 𝑥 ) ≼ ( 𝐶 ↑m 𝐵 ) ) | |
| 53 | 39 51 52 | syl2anc | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝑥 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| 54 | endomtr | ⊢ ( ( ( 𝐶 ↑m 𝐴 ) ≈ ( 𝐶 ↑m 𝑥 ) ∧ ( 𝐶 ↑m 𝑥 ) ≼ ( 𝐶 ↑m 𝐵 ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) | |
| 55 | 25 53 54 | syl2anc | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| 56 | 55 | expr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) ) |
| 57 | 56 | exlimdv | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ( ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) ) |
| 58 | 20 57 | mpd | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| 59 | 58 | adantlr | ⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 ≠ ∅ ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| 60 | 13 59 | pm2.61dane | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| 61 | 60 | an32s | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 ∈ V ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| 62 | 61 | ex | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐶 ∈ V → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) ) |
| 63 | reldmmap | ⊢ Rel dom ↑m | |
| 64 | 63 | ovprc1 | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐶 ↑m 𝐴 ) = ∅ ) |
| 65 | 64 12 | eqbrtrdi | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
| 66 | 62 65 | pm2.61d1 | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |