This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of Enderton p. 139. (Contributed by NM, 16-Dec-2003) (Proof shortened by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapen | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝐵 ↑m 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | bren | ⊢ ( 𝐶 ≈ 𝐷 ↔ ∃ 𝑔 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) | |
| 3 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑔 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ) | |
| 4 | ovexd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝐴 ↑m 𝐶 ) ∈ V ) | |
| 5 | ovexd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝐵 ↑m 𝐷 ) ∈ V ) | |
| 6 | elmapi | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) → 𝑥 : 𝐶 ⟶ 𝐴 ) | |
| 7 | f1of | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 9 | fco | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 : 𝐶 ⟶ 𝐴 ) → ( 𝑓 ∘ 𝑥 ) : 𝐶 ⟶ 𝐵 ) | |
| 10 | 8 9 | sylan | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐶 ⟶ 𝐴 ) → ( 𝑓 ∘ 𝑥 ) : 𝐶 ⟶ 𝐵 ) |
| 11 | f1ocnv | ⊢ ( 𝑔 : 𝐶 –1-1-onto→ 𝐷 → ◡ 𝑔 : 𝐷 –1-1-onto→ 𝐶 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ◡ 𝑔 : 𝐷 –1-1-onto→ 𝐶 ) |
| 13 | f1of | ⊢ ( ◡ 𝑔 : 𝐷 –1-1-onto→ 𝐶 → ◡ 𝑔 : 𝐷 ⟶ 𝐶 ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ◡ 𝑔 : 𝐷 ⟶ 𝐶 ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐶 ⟶ 𝐴 ) → ◡ 𝑔 : 𝐷 ⟶ 𝐶 ) |
| 16 | 10 15 | fcod | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐶 ⟶ 𝐴 ) → ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐷 ⟶ 𝐵 ) |
| 17 | 16 | ex | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑥 : 𝐶 ⟶ 𝐴 → ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐷 ⟶ 𝐵 ) ) |
| 18 | 6 17 | syl5 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) → ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐷 ⟶ 𝐵 ) ) |
| 19 | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → 𝑓 : 𝐴 –onto→ 𝐵 ) |
| 21 | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ran 𝑓 = 𝐵 ) |
| 23 | vex | ⊢ 𝑓 ∈ V | |
| 24 | 23 | rnex | ⊢ ran 𝑓 ∈ V |
| 25 | 22 24 | eqeltrrdi | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → 𝐵 ∈ V ) |
| 26 | f1ofo | ⊢ ( 𝑔 : 𝐶 –1-1-onto→ 𝐷 → 𝑔 : 𝐶 –onto→ 𝐷 ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → 𝑔 : 𝐶 –onto→ 𝐷 ) |
| 28 | forn | ⊢ ( 𝑔 : 𝐶 –onto→ 𝐷 → ran 𝑔 = 𝐷 ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ran 𝑔 = 𝐷 ) |
| 30 | vex | ⊢ 𝑔 ∈ V | |
| 31 | 30 | rnex | ⊢ ran 𝑔 ∈ V |
| 32 | 29 31 | eqeltrrdi | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → 𝐷 ∈ V ) |
| 33 | 25 32 | elmapd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∈ ( 𝐵 ↑m 𝐷 ) ↔ ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐷 ⟶ 𝐵 ) ) |
| 34 | 18 33 | sylibrd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) → ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∈ ( 𝐵 ↑m 𝐷 ) ) ) |
| 35 | elmapi | ⊢ ( 𝑦 ∈ ( 𝐵 ↑m 𝐷 ) → 𝑦 : 𝐷 ⟶ 𝐵 ) | |
| 36 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 37 | 36 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) |
| 38 | f1of | ⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 ⟶ 𝐴 ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ◡ 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) → ◡ 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 41 | id | ⊢ ( 𝑦 : 𝐷 ⟶ 𝐵 → 𝑦 : 𝐷 ⟶ 𝐵 ) | |
| 42 | f1of | ⊢ ( 𝑔 : 𝐶 –1-1-onto→ 𝐷 → 𝑔 : 𝐶 ⟶ 𝐷 ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 44 | fco | ⊢ ( ( 𝑦 : 𝐷 ⟶ 𝐵 ∧ 𝑔 : 𝐶 ⟶ 𝐷 ) → ( 𝑦 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) | |
| 45 | 41 43 44 | syl2anr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) → ( 𝑦 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
| 46 | 40 45 | fcod | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) → ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐶 ⟶ 𝐴 ) |
| 47 | 46 | ex | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑦 : 𝐷 ⟶ 𝐵 → ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐶 ⟶ 𝐴 ) ) |
| 48 | 35 47 | syl5 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑦 ∈ ( 𝐵 ↑m 𝐷 ) → ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐶 ⟶ 𝐴 ) ) |
| 49 | f1odm | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → dom 𝑓 = 𝐴 ) | |
| 50 | 49 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → dom 𝑓 = 𝐴 ) |
| 51 | 23 | dmex | ⊢ dom 𝑓 ∈ V |
| 52 | 50 51 | eqeltrrdi | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → 𝐴 ∈ V ) |
| 53 | f1odm | ⊢ ( 𝑔 : 𝐶 –1-1-onto→ 𝐷 → dom 𝑔 = 𝐶 ) | |
| 54 | 53 | adantl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → dom 𝑔 = 𝐶 ) |
| 55 | 30 | dmex | ⊢ dom 𝑔 ∈ V |
| 56 | 54 55 | eqeltrrdi | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → 𝐶 ∈ V ) |
| 57 | 52 56 | elmapd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ∈ ( 𝐴 ↑m 𝐶 ) ↔ ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐶 ⟶ 𝐴 ) ) |
| 58 | 48 57 | sylibrd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑦 ∈ ( 𝐵 ↑m 𝐷 ) → ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ∈ ( 𝐴 ↑m 𝐶 ) ) ) |
| 59 | coass | ⊢ ( ( 𝑓 ∘ ◡ 𝑓 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑓 ∘ ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ) | |
| 60 | f1ococnv2 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑓 ∘ ◡ 𝑓 ) = ( I ↾ 𝐵 ) ) | |
| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( 𝑓 ∘ ◡ 𝑓 ) = ( I ↾ 𝐵 ) ) |
| 62 | 61 | coeq1d | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ ◡ 𝑓 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝑦 ∘ 𝑔 ) ) ) |
| 63 | 45 | adantrl | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( 𝑦 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
| 64 | fcoi2 | ⊢ ( ( 𝑦 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) |
| 66 | 62 65 | eqtrd | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ ◡ 𝑓 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) |
| 67 | 59 66 | eqtr3id | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( 𝑓 ∘ ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ) = ( 𝑦 ∘ 𝑔 ) ) |
| 68 | 67 | eqeq2d | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑥 ) = ( 𝑓 ∘ ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ ( 𝑓 ∘ 𝑥 ) = ( 𝑦 ∘ 𝑔 ) ) ) |
| 69 | coass | ⊢ ( ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) = ( ( 𝑓 ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) | |
| 70 | f1ococnv1 | ⊢ ( 𝑔 : 𝐶 –1-1-onto→ 𝐷 → ( ◡ 𝑔 ∘ 𝑔 ) = ( I ↾ 𝐶 ) ) | |
| 71 | 70 | ad2antlr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ◡ 𝑔 ∘ 𝑔 ) = ( I ↾ 𝐶 ) ) |
| 72 | 71 | coeq2d | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) = ( ( 𝑓 ∘ 𝑥 ) ∘ ( I ↾ 𝐶 ) ) ) |
| 73 | 10 | adantrr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( 𝑓 ∘ 𝑥 ) : 𝐶 ⟶ 𝐵 ) |
| 74 | fcoi1 | ⊢ ( ( 𝑓 ∘ 𝑥 ) : 𝐶 ⟶ 𝐵 → ( ( 𝑓 ∘ 𝑥 ) ∘ ( I ↾ 𝐶 ) ) = ( 𝑓 ∘ 𝑥 ) ) | |
| 75 | 73 74 | syl | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑥 ) ∘ ( I ↾ 𝐶 ) ) = ( 𝑓 ∘ 𝑥 ) ) |
| 76 | 72 75 | eqtrd | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) = ( 𝑓 ∘ 𝑥 ) ) |
| 77 | 69 76 | eqtrid | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) = ( 𝑓 ∘ 𝑥 ) ) |
| 78 | 77 | eqeq2d | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑦 ∘ 𝑔 ) = ( ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ↔ ( 𝑦 ∘ 𝑔 ) = ( 𝑓 ∘ 𝑥 ) ) ) |
| 79 | eqcom | ⊢ ( ( 𝑦 ∘ 𝑔 ) = ( 𝑓 ∘ 𝑥 ) ↔ ( 𝑓 ∘ 𝑥 ) = ( 𝑦 ∘ 𝑔 ) ) | |
| 80 | 78 79 | bitrdi | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑦 ∘ 𝑔 ) = ( ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ↔ ( 𝑓 ∘ 𝑥 ) = ( 𝑦 ∘ 𝑔 ) ) ) |
| 81 | 68 80 | bitr4d | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑥 ) = ( 𝑓 ∘ ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ ( 𝑦 ∘ 𝑔 ) = ( ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ) ) |
| 82 | f1of1 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 83 | 82 | ad2antrr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 84 | simprl | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → 𝑥 : 𝐶 ⟶ 𝐴 ) | |
| 85 | 46 | adantrl | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐶 ⟶ 𝐴 ) |
| 86 | cocan1 | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 : 𝐶 ⟶ 𝐴 ∧ ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐶 ⟶ 𝐴 ) → ( ( 𝑓 ∘ 𝑥 ) = ( 𝑓 ∘ ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ 𝑥 = ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ) ) | |
| 87 | 83 84 85 86 | syl3anc | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑥 ) = ( 𝑓 ∘ ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ 𝑥 = ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ) ) |
| 88 | 27 | adantr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → 𝑔 : 𝐶 –onto→ 𝐷 ) |
| 89 | ffn | ⊢ ( 𝑦 : 𝐷 ⟶ 𝐵 → 𝑦 Fn 𝐷 ) | |
| 90 | 89 | ad2antll | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → 𝑦 Fn 𝐷 ) |
| 91 | 16 | adantrr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐷 ⟶ 𝐵 ) |
| 92 | 91 | ffnd | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) Fn 𝐷 ) |
| 93 | cocan2 | ⊢ ( ( 𝑔 : 𝐶 –onto→ 𝐷 ∧ 𝑦 Fn 𝐷 ∧ ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) Fn 𝐷 ) → ( ( 𝑦 ∘ 𝑔 ) = ( ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ↔ 𝑦 = ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) | |
| 94 | 88 90 92 93 | syl3anc | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( ( 𝑦 ∘ 𝑔 ) = ( ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ↔ 𝑦 = ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) |
| 95 | 81 87 94 | 3bitr3d | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) ) → ( 𝑥 = ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) |
| 96 | 95 | ex | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( 𝑥 : 𝐶 ⟶ 𝐴 ∧ 𝑦 : 𝐷 ⟶ 𝐵 ) → ( 𝑥 = ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) ) |
| 97 | 6 35 96 | syl2ani | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ↑m 𝐷 ) ) → ( 𝑥 = ( ◡ 𝑓 ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( 𝑓 ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) ) |
| 98 | 4 5 34 58 97 | en3d | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝐵 ↑m 𝐷 ) ) |
| 99 | 98 | exlimivv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝐵 ↑m 𝐷 ) ) |
| 100 | 3 99 | sylbir | ⊢ ( ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑔 𝑔 : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝐵 ↑m 𝐷 ) ) |
| 101 | 1 2 100 | syl2anb | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝐵 ↑m 𝐷 ) ) |