This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of TakeutiZaring p. 96. (Contributed by NM, 21-Feb-2004) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapxpen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ≈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∈ V ) | |
| 2 | ovexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ∈ V ) | |
| 3 | elmapi | ⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) → 𝑓 : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) | |
| 4 | 3 | ffvelcdmda | ⊢ ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐵 ) ) |
| 5 | elmapi | ⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝑓 ‘ 𝑦 ) : 𝐵 ⟶ 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑓 ‘ 𝑦 ) : 𝐵 ⟶ 𝐴 ) |
| 7 | 6 | ffvelcdmda | ⊢ ( ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 8 | 7 | an32s | ⊢ ( ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 9 | 8 | ralrimiva | ⊢ ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) | |
| 12 | 11 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) |
| 13 | 10 12 | sylib | ⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) |
| 14 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) | |
| 15 | xpexg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 × 𝐶 ) ∈ V ) | |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 × 𝐶 ) ∈ V ) |
| 17 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 × 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) ) | |
| 18 | 14 16 17 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) ) |
| 19 | 13 18 | imbitrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) |
| 20 | elmapi | ⊢ ( 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) → 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) | |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) → 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) |
| 22 | fovcdm | ⊢ ( ( 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 𝑔 𝑦 ) ∈ 𝐴 ) | |
| 23 | 22 | 3expa | ⊢ ( ( ( 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 𝑔 𝑦 ) ∈ 𝐴 ) |
| 24 | 23 | an32s | ⊢ ( ( ( 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 𝑔 𝑦 ) ∈ 𝐴 ) |
| 25 | 21 24 | sylanl1 | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 𝑔 𝑦 ) ∈ 𝐴 ) |
| 26 | 25 | fmpttd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) |
| 27 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ ( 𝐴 ↑m 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) ) | |
| 28 | 27 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ ( 𝐴 ↑m 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ ( 𝐴 ↑m 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) ) |
| 30 | 26 29 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ ( 𝐴 ↑m 𝐵 ) ) |
| 31 | 30 | fmpttd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) |
| 32 | 31 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) ) |
| 33 | ovex | ⊢ ( 𝐴 ↑m 𝐵 ) ∈ V | |
| 34 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) | |
| 35 | elmapg | ⊢ ( ( ( 𝐴 ↑m 𝐵 ) ∈ V ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ↔ ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ↔ ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) ) |
| 37 | 32 36 | sylibrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ) ) |
| 38 | elmapfn | ⊢ ( 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) → 𝑔 Fn ( 𝐵 × 𝐶 ) ) | |
| 39 | 38 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑔 Fn ( 𝐵 × 𝐶 ) ) |
| 40 | fnov | ⊢ ( 𝑔 Fn ( 𝐵 × 𝐶 ) ↔ 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑔 𝑦 ) ) ) | |
| 41 | 39 40 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
| 42 | simp3 | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) | |
| 43 | 26 | adantlrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) |
| 44 | 43 | 3adant2 | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) |
| 45 | simp1l2 | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝐵 ∈ 𝑊 ) | |
| 46 | simp1l1 | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝑉 ) | |
| 47 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ V ) | |
| 48 | 44 45 46 47 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ V ) |
| 49 | eqid | ⊢ ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) | |
| 50 | 49 | fvmpt2 | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ V ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
| 51 | 42 48 50 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
| 52 | 51 | fveq1d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ‘ 𝑥 ) ) |
| 53 | simp2 | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 ∈ 𝐵 ) | |
| 54 | ovex | ⊢ ( 𝑥 𝑔 𝑦 ) ∈ V | |
| 55 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) | |
| 56 | 55 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 𝑔 𝑦 ) ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ‘ 𝑥 ) = ( 𝑥 𝑔 𝑦 ) ) |
| 57 | 53 54 56 | sylancl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ‘ 𝑥 ) = ( 𝑥 𝑔 𝑦 ) ) |
| 58 | 52 57 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 𝑔 𝑦 ) ) |
| 59 | 58 | mpoeq3dva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
| 60 | 41 59 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 61 | eqid | ⊢ 𝐵 = 𝐵 | |
| 62 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 63 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) | |
| 64 | 62 63 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
| 65 | 64 | nfeq2 | ⊢ Ⅎ 𝑥 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
| 66 | nfmpt1 | ⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) | |
| 67 | 66 | nfeq2 | ⊢ Ⅎ 𝑦 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
| 68 | fveq1 | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ) | |
| 69 | 68 | fveq1d | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 70 | 69 | a1d | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑦 ∈ 𝐶 → ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 71 | 67 70 | ralrimi | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 72 | eqid | ⊢ 𝐶 = 𝐶 | |
| 73 | 71 72 | jctil | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 74 | 73 | a1d | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑥 ∈ 𝐵 → ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 75 | 65 74 | ralrimi | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 76 | mpoeq123 | ⊢ ( ( 𝐵 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) | |
| 77 | 61 75 76 | sylancr | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 78 | 77 | eqeq2d | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ↔ 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 79 | 60 78 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 80 | 3 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑓 : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) |
| 81 | 80 | feqmptd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 82 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ) | |
| 83 | 82 6 | sylan | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑓 ‘ 𝑦 ) : 𝐵 ⟶ 𝐴 ) |
| 84 | 83 | feqmptd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑓 ‘ 𝑦 ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 85 | 84 | mpteq2dva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 86 | 81 85 | eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 87 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) | |
| 88 | 87 | nfeq2 | ⊢ Ⅎ 𝑦 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 89 | eqidd | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → 𝐵 = 𝐵 ) | |
| 90 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) | |
| 91 | 90 | nfeq2 | ⊢ Ⅎ 𝑥 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 92 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 | |
| 93 | fvex | ⊢ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ V | |
| 94 | 11 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ∧ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 95 | 93 94 | mp3an3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 96 | oveq | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑦 ) ) | |
| 97 | 96 | eqeq1d | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ↔ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 98 | 95 97 | imbitrrid | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 99 | 98 | expcomd | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 → ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 100 | 91 92 99 | ralrimd | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐶 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 101 | mpteq12 | ⊢ ( ( 𝐵 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) | |
| 102 | 89 100 101 | syl6an | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 103 | 88 102 | ralrimi | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 104 | mpteq12 | ⊢ ( ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) | |
| 105 | 72 103 104 | sylancr | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 106 | 105 | eqeq2d | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ↔ 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) ) |
| 107 | 86 106 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ) ) |
| 108 | 79 107 | impbid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ↔ 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
| 109 | 108 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) → ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ↔ 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) ) |
| 110 | 1 2 19 37 109 | en3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ≈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) |