This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatrn | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran ( 𝑆 ++ 𝑇 ) = ( ran 𝑆 ∪ ran 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatvalfn | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) | |
| 2 | lencl | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 3 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 4 | 2 3 | eleqtrdi | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 6 | 2 | nn0zd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
| 7 | 6 | uzidd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) |
| 8 | lencl | ⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) | |
| 9 | uzaddcl | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) |
| 11 | elfzuzb | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) ) | |
| 12 | 5 10 11 | sylanbrc | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 13 | fzosplit | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∪ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∪ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) |
| 15 | 14 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ 𝑥 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∪ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) ) |
| 16 | elun | ⊢ ( 𝑥 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∪ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ↔ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) | |
| 17 | 15 16 | bitrdi | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) ) |
| 18 | ccatval1 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 19 | 18 | 3expa | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 20 | ssun1 | ⊢ ran 𝑆 ⊆ ( ran 𝑆 ∪ ran 𝑇 ) | |
| 21 | wrdfn | ⊢ ( 𝑆 ∈ Word 𝐵 → 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 23 | fnfvelrn | ⊢ ( ( 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ran 𝑆 ) | |
| 24 | 22 23 | sylan | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ran 𝑆 ) |
| 25 | 20 24 | sselid | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
| 26 | 19 25 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
| 27 | ccatval2 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) | |
| 28 | 27 | 3expa | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) |
| 29 | ssun2 | ⊢ ran 𝑇 ⊆ ( ran 𝑆 ∪ ran 𝑇 ) | |
| 30 | wrdfn | ⊢ ( 𝑇 ∈ Word 𝐵 → 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 32 | elfzouz | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) | |
| 33 | uznn0sub | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ) | |
| 34 | 32 33 | syl | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ) |
| 35 | 34 3 | eleqtrdi | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 36 | 35 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 37 | 8 | nn0zd | ⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 38 | 37 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 39 | elfzolt2 | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝑥 < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) | |
| 40 | 39 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → 𝑥 < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
| 41 | elfzoelz | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ℤ ) | |
| 42 | 41 | zred | ⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 44 | 2 | nn0red | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
| 46 | 8 | nn0red | ⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℝ ) |
| 47 | 46 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ♯ ‘ 𝑇 ) ∈ ℝ ) |
| 48 | 43 45 47 | ltsubadd2d | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑥 − ( ♯ ‘ 𝑆 ) ) < ( ♯ ‘ 𝑇 ) ↔ 𝑥 < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 49 | 40 48 | mpbird | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) < ( ♯ ‘ 𝑇 ) ) |
| 50 | elfzo2 | ⊢ ( ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ↔ ( ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ∧ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) < ( ♯ ‘ 𝑇 ) ) ) | |
| 51 | 36 38 49 50 | syl3anbrc | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 52 | fnfvelrn | ⊢ ( ( 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ∈ ran 𝑇 ) | |
| 53 | 31 51 52 | syl2an2r | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ∈ ran 𝑇 ) |
| 54 | 29 53 | sselid | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
| 55 | 28 54 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
| 56 | 26 55 | jaodan | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
| 57 | 56 | ex | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) ) |
| 58 | 17 57 | sylbid | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) ) |
| 59 | 58 | ralrimiv | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
| 60 | ffnfv | ⊢ ( ( 𝑆 ++ 𝑇 ) : ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⟶ ( ran 𝑆 ∪ ran 𝑇 ) ↔ ( ( 𝑆 ++ 𝑇 ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) ) | |
| 61 | 1 59 60 | sylanbrc | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) : ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⟶ ( ran 𝑆 ∪ ran 𝑇 ) ) |
| 62 | 61 | frnd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran ( 𝑆 ++ 𝑇 ) ⊆ ( ran 𝑆 ∪ ran 𝑇 ) ) |
| 63 | fzoss2 | ⊢ ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) | |
| 64 | 10 63 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 65 | 64 | sselda | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 66 | fnfvelrn | ⊢ ( ( ( 𝑆 ++ 𝑇 ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) | |
| 67 | 1 65 66 | syl2an2r | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
| 68 | 19 67 | eqeltrrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
| 69 | 68 | ralrimiva | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ( 𝑆 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
| 70 | ffnfv | ⊢ ( 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ ran ( 𝑆 ++ 𝑇 ) ↔ ( 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ( 𝑆 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) ) | |
| 71 | 22 69 70 | sylanbrc | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ ran ( 𝑆 ++ 𝑇 ) ) |
| 72 | 71 | frnd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran 𝑆 ⊆ ran ( 𝑆 ++ 𝑇 ) ) |
| 73 | ccatval3 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 74 | 73 | 3expa | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝑥 ) ) |
| 75 | elfzouz | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 76 | 2 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 77 | uzaddcl | ⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 78 | 75 76 77 | syl2anr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 79 | nn0addcl | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℕ0 ) | |
| 80 | 2 8 79 | syl2an | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℕ0 ) |
| 81 | 80 | nn0zd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℤ ) |
| 82 | 81 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℤ ) |
| 83 | elfzonn0 | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ℕ0 ) | |
| 84 | 83 | nn0cnd | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ℂ ) |
| 85 | 2 | nn0cnd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 86 | 85 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 87 | addcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ♯ ‘ 𝑆 ) ∈ ℂ ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( ( ♯ ‘ 𝑆 ) + 𝑥 ) ) | |
| 88 | 84 86 87 | syl2anr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( ( ♯ ‘ 𝑆 ) + 𝑥 ) ) |
| 89 | 83 | nn0red | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ℝ ) |
| 90 | 89 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 91 | 46 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑇 ) ∈ ℝ ) |
| 92 | 44 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
| 93 | elfzolt2 | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 < ( ♯ ‘ 𝑇 ) ) | |
| 94 | 93 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑥 < ( ♯ ‘ 𝑇 ) ) |
| 95 | 90 91 92 94 | ltadd2dd | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ♯ ‘ 𝑆 ) + 𝑥 ) < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
| 96 | 88 95 | eqbrtrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
| 97 | elfzo2 | ⊢ ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℤ ∧ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) | |
| 98 | 78 82 96 97 | syl3anbrc | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 99 | fnfvelrn | ⊢ ( ( ( 𝑆 ++ 𝑇 ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ) ∈ ran ( 𝑆 ++ 𝑇 ) ) | |
| 100 | 1 98 99 | syl2an2r | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
| 101 | 74 100 | eqeltrrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑇 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
| 102 | 101 | ralrimiva | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ( 𝑇 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
| 103 | ffnfv | ⊢ ( 𝑇 : ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⟶ ran ( 𝑆 ++ 𝑇 ) ↔ ( 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ( 𝑇 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) ) | |
| 104 | 31 102 103 | sylanbrc | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑇 : ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⟶ ran ( 𝑆 ++ 𝑇 ) ) |
| 105 | 104 | frnd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran 𝑇 ⊆ ran ( 𝑆 ++ 𝑇 ) ) |
| 106 | 72 105 | unssd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ran 𝑆 ∪ ran 𝑇 ) ⊆ ran ( 𝑆 ++ 𝑇 ) ) |
| 107 | 62 106 | eqssd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran ( 𝑆 ++ 𝑇 ) = ( ran 𝑆 ∪ ran 𝑇 ) ) |