This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axcc . (Contributed by Mario Carneiro, 2-Feb-2013) (Revised by Mario Carneiro, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axcclem.1 | ⊢ 𝐴 = ( 𝑥 ∖ { ∅ } ) | |
| axcclem.2 | ⊢ 𝐹 = ( 𝑛 ∈ ω , 𝑦 ∈ ∪ 𝐴 ↦ ( 𝑓 ‘ 𝑛 ) ) | ||
| axcclem.3 | ⊢ 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) | ||
| Assertion | axcclem | ⊢ ( 𝑥 ≈ ω → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcclem.1 | ⊢ 𝐴 = ( 𝑥 ∖ { ∅ } ) | |
| 2 | axcclem.2 | ⊢ 𝐹 = ( 𝑛 ∈ ω , 𝑦 ∈ ∪ 𝐴 ↦ ( 𝑓 ‘ 𝑛 ) ) | |
| 3 | axcclem.3 | ⊢ 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) | |
| 4 | isfinite2 | ⊢ ( 𝐴 ≺ ω → 𝐴 ∈ Fin ) | |
| 5 | 1 | eleq1i | ⊢ ( 𝐴 ∈ Fin ↔ ( 𝑥 ∖ { ∅ } ) ∈ Fin ) |
| 6 | undif1 | ⊢ ( ( 𝑥 ∖ { ∅ } ) ∪ { ∅ } ) = ( 𝑥 ∪ { ∅ } ) | |
| 7 | snfi | ⊢ { ∅ } ∈ Fin | |
| 8 | unfi | ⊢ ( ( ( 𝑥 ∖ { ∅ } ) ∈ Fin ∧ { ∅ } ∈ Fin ) → ( ( 𝑥 ∖ { ∅ } ) ∪ { ∅ } ) ∈ Fin ) | |
| 9 | 7 8 | mpan2 | ⊢ ( ( 𝑥 ∖ { ∅ } ) ∈ Fin → ( ( 𝑥 ∖ { ∅ } ) ∪ { ∅ } ) ∈ Fin ) |
| 10 | 6 9 | eqeltrrid | ⊢ ( ( 𝑥 ∖ { ∅ } ) ∈ Fin → ( 𝑥 ∪ { ∅ } ) ∈ Fin ) |
| 11 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { ∅ } ) | |
| 12 | ssfi | ⊢ ( ( ( 𝑥 ∪ { ∅ } ) ∈ Fin ∧ 𝑥 ⊆ ( 𝑥 ∪ { ∅ } ) ) → 𝑥 ∈ Fin ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( ( 𝑥 ∖ { ∅ } ) ∈ Fin → 𝑥 ∈ Fin ) |
| 14 | 5 13 | sylbi | ⊢ ( 𝐴 ∈ Fin → 𝑥 ∈ Fin ) |
| 15 | dcomex | ⊢ ω ∈ V | |
| 16 | isfiniteg | ⊢ ( ω ∈ V → ( 𝑥 ∈ Fin ↔ 𝑥 ≺ ω ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( 𝑥 ∈ Fin ↔ 𝑥 ≺ ω ) |
| 18 | sdomnen | ⊢ ( 𝑥 ≺ ω → ¬ 𝑥 ≈ ω ) | |
| 19 | 17 18 | sylbi | ⊢ ( 𝑥 ∈ Fin → ¬ 𝑥 ≈ ω ) |
| 20 | 4 14 19 | 3syl | ⊢ ( 𝐴 ≺ ω → ¬ 𝑥 ≈ ω ) |
| 21 | 20 | con2i | ⊢ ( 𝑥 ≈ ω → ¬ 𝐴 ≺ ω ) |
| 22 | sdomentr | ⊢ ( ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≈ ω ) → 𝐴 ≺ ω ) | |
| 23 | 22 | expcom | ⊢ ( 𝑥 ≈ ω → ( 𝐴 ≺ 𝑥 → 𝐴 ≺ ω ) ) |
| 24 | 21 23 | mtod | ⊢ ( 𝑥 ≈ ω → ¬ 𝐴 ≺ 𝑥 ) |
| 25 | vex | ⊢ 𝑥 ∈ V | |
| 26 | difss | ⊢ ( 𝑥 ∖ { ∅ } ) ⊆ 𝑥 | |
| 27 | 1 26 | eqsstri | ⊢ 𝐴 ⊆ 𝑥 |
| 28 | ssdomg | ⊢ ( 𝑥 ∈ V → ( 𝐴 ⊆ 𝑥 → 𝐴 ≼ 𝑥 ) ) | |
| 29 | 25 27 28 | mp2 | ⊢ 𝐴 ≼ 𝑥 |
| 30 | 24 29 | jctil | ⊢ ( 𝑥 ≈ ω → ( 𝐴 ≼ 𝑥 ∧ ¬ 𝐴 ≺ 𝑥 ) ) |
| 31 | bren2 | ⊢ ( 𝐴 ≈ 𝑥 ↔ ( 𝐴 ≼ 𝑥 ∧ ¬ 𝐴 ≺ 𝑥 ) ) | |
| 32 | 30 31 | sylibr | ⊢ ( 𝑥 ≈ ω → 𝐴 ≈ 𝑥 ) |
| 33 | entr | ⊢ ( ( 𝐴 ≈ 𝑥 ∧ 𝑥 ≈ ω ) → 𝐴 ≈ ω ) | |
| 34 | 32 33 | mpancom | ⊢ ( 𝑥 ≈ ω → 𝐴 ≈ ω ) |
| 35 | ensym | ⊢ ( 𝐴 ≈ ω → ω ≈ 𝐴 ) | |
| 36 | bren | ⊢ ( ω ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ω –1-1-onto→ 𝐴 ) | |
| 37 | f1of | ⊢ ( 𝑓 : ω –1-1-onto→ 𝐴 → 𝑓 : ω ⟶ 𝐴 ) | |
| 38 | peano1 | ⊢ ∅ ∈ ω | |
| 39 | ffvelcdm | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ∅ ∈ ω ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) | |
| 40 | 37 38 39 | sylancl | ⊢ ( 𝑓 : ω –1-1-onto→ 𝐴 → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
| 41 | eldifn | ⊢ ( ( 𝑓 ‘ ∅ ) ∈ ( 𝑥 ∖ { ∅ } ) → ¬ ( 𝑓 ‘ ∅ ) ∈ { ∅ } ) | |
| 42 | 41 1 | eleq2s | ⊢ ( ( 𝑓 ‘ ∅ ) ∈ 𝐴 → ¬ ( 𝑓 ‘ ∅ ) ∈ { ∅ } ) |
| 43 | fvex | ⊢ ( 𝑓 ‘ ∅ ) ∈ V | |
| 44 | 43 | elsn | ⊢ ( ( 𝑓 ‘ ∅ ) ∈ { ∅ } ↔ ( 𝑓 ‘ ∅ ) = ∅ ) |
| 45 | 44 | notbii | ⊢ ( ¬ ( 𝑓 ‘ ∅ ) ∈ { ∅ } ↔ ¬ ( 𝑓 ‘ ∅ ) = ∅ ) |
| 46 | neq0 | ⊢ ( ¬ ( 𝑓 ‘ ∅ ) = ∅ ↔ ∃ 𝑐 𝑐 ∈ ( 𝑓 ‘ ∅ ) ) | |
| 47 | 45 46 | bitr2i | ⊢ ( ∃ 𝑐 𝑐 ∈ ( 𝑓 ‘ ∅ ) ↔ ¬ ( 𝑓 ‘ ∅ ) ∈ { ∅ } ) |
| 48 | 42 47 | sylibr | ⊢ ( ( 𝑓 ‘ ∅ ) ∈ 𝐴 → ∃ 𝑐 𝑐 ∈ ( 𝑓 ‘ ∅ ) ) |
| 49 | 40 48 | syl | ⊢ ( 𝑓 : ω –1-1-onto→ 𝐴 → ∃ 𝑐 𝑐 ∈ ( 𝑓 ‘ ∅ ) ) |
| 50 | elunii | ⊢ ( ( 𝑐 ∈ ( 𝑓 ‘ ∅ ) ∧ ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) → 𝑐 ∈ ∪ 𝐴 ) | |
| 51 | 40 50 | sylan2 | ⊢ ( ( 𝑐 ∈ ( 𝑓 ‘ ∅ ) ∧ 𝑓 : ω –1-1-onto→ 𝐴 ) → 𝑐 ∈ ∪ 𝐴 ) |
| 52 | 37 | ffvelcdmda | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑛 ∈ ω ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 53 | difabs | ⊢ ( ( 𝑥 ∖ { ∅ } ) ∖ { ∅ } ) = ( 𝑥 ∖ { ∅ } ) | |
| 54 | 1 | difeq1i | ⊢ ( 𝐴 ∖ { ∅ } ) = ( ( 𝑥 ∖ { ∅ } ) ∖ { ∅ } ) |
| 55 | 53 54 1 | 3eqtr4i | ⊢ ( 𝐴 ∖ { ∅ } ) = 𝐴 |
| 56 | pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 57 | ssdif | ⊢ ( 𝐴 ⊆ 𝒫 ∪ 𝐴 → ( 𝐴 ∖ { ∅ } ) ⊆ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) | |
| 58 | 56 57 | ax-mp | ⊢ ( 𝐴 ∖ { ∅ } ) ⊆ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) |
| 59 | 55 58 | eqsstrri | ⊢ 𝐴 ⊆ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) |
| 60 | 59 | sseli | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 → ( 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) |
| 61 | 60 | ralrimivw | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 → ∀ 𝑦 ∈ ∪ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) |
| 62 | 52 61 | syl | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑛 ∈ ω ) → ∀ 𝑦 ∈ ∪ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) |
| 63 | 62 | ralrimiva | ⊢ ( 𝑓 : ω –1-1-onto→ 𝐴 → ∀ 𝑛 ∈ ω ∀ 𝑦 ∈ ∪ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) |
| 64 | 2 | fmpo | ⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑦 ∈ ∪ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ↔ 𝐹 : ( ω × ∪ 𝐴 ) ⟶ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) |
| 65 | 63 64 | sylib | ⊢ ( 𝑓 : ω –1-1-onto→ 𝐴 → 𝐹 : ( ω × ∪ 𝐴 ) ⟶ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) |
| 66 | 65 | adantl | ⊢ ( ( 𝑐 ∈ ( 𝑓 ‘ ∅ ) ∧ 𝑓 : ω –1-1-onto→ 𝐴 ) → 𝐹 : ( ω × ∪ 𝐴 ) ⟶ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) |
| 67 | 25 | difexi | ⊢ ( 𝑥 ∖ { ∅ } ) ∈ V |
| 68 | 1 67 | eqeltri | ⊢ 𝐴 ∈ V |
| 69 | 68 | uniex | ⊢ ∪ 𝐴 ∈ V |
| 70 | 69 | axdc4 | ⊢ ( ( 𝑐 ∈ ∪ 𝐴 ∧ 𝐹 : ( ω × ∪ 𝐴 ) ⟶ ( 𝒫 ∪ 𝐴 ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ( ℎ ‘ ∅ ) = 𝑐 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) |
| 71 | 51 66 70 | syl2anc | ⊢ ( ( 𝑐 ∈ ( 𝑓 ‘ ∅ ) ∧ 𝑓 : ω –1-1-onto→ 𝐴 ) → ∃ ℎ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ( ℎ ‘ ∅ ) = 𝑐 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) |
| 72 | 3simpb | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ ( ℎ ‘ ∅ ) = 𝑐 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) → ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) | |
| 73 | 72 | eximi | ⊢ ( ∃ ℎ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ( ℎ ‘ ∅ ) = 𝑐 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) → ∃ ℎ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) |
| 74 | 71 73 | syl | ⊢ ( ( 𝑐 ∈ ( 𝑓 ‘ ∅ ) ∧ 𝑓 : ω –1-1-onto→ 𝐴 ) → ∃ ℎ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) |
| 75 | 74 | ex | ⊢ ( 𝑐 ∈ ( 𝑓 ‘ ∅ ) → ( 𝑓 : ω –1-1-onto→ 𝐴 → ∃ ℎ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) ) |
| 76 | 75 | exlimiv | ⊢ ( ∃ 𝑐 𝑐 ∈ ( 𝑓 ‘ ∅ ) → ( 𝑓 : ω –1-1-onto→ 𝐴 → ∃ ℎ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) ) |
| 77 | 49 76 | mpcom | ⊢ ( 𝑓 : ω –1-1-onto→ 𝐴 → ∃ ℎ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) |
| 78 | velsn | ⊢ ( 𝑧 ∈ { ∅ } ↔ 𝑧 = ∅ ) | |
| 79 | 78 | necon3bbii | ⊢ ( ¬ 𝑧 ∈ { ∅ } ↔ 𝑧 ≠ ∅ ) |
| 80 | 1 | eleq2i | ⊢ ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ ( 𝑥 ∖ { ∅ } ) ) |
| 81 | eldif | ⊢ ( 𝑧 ∈ ( 𝑥 ∖ { ∅ } ) ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ { ∅ } ) ) | |
| 82 | 80 81 | sylbbr | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ { ∅ } ) → 𝑧 ∈ 𝐴 ) |
| 83 | 79 82 | sylan2br | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → 𝑧 ∈ 𝐴 ) |
| 84 | simpl | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑓 : ω –1-1-onto→ 𝐴 ) | |
| 85 | f1ofo | ⊢ ( 𝑓 : ω –1-1-onto→ 𝐴 → 𝑓 : ω –onto→ 𝐴 ) | |
| 86 | foelrn | ⊢ ( ( 𝑓 : ω –onto→ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑖 ∈ ω 𝑧 = ( 𝑓 ‘ 𝑖 ) ) | |
| 87 | 85 86 | sylan | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑖 ∈ ω 𝑧 = ( 𝑓 ‘ 𝑖 ) ) |
| 88 | suceq | ⊢ ( 𝑘 = 𝑖 → suc 𝑘 = suc 𝑖 ) | |
| 89 | 88 | fveq2d | ⊢ ( 𝑘 = 𝑖 → ( ℎ ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑖 ) ) |
| 90 | id | ⊢ ( 𝑘 = 𝑖 → 𝑘 = 𝑖 ) | |
| 91 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( ℎ ‘ 𝑘 ) = ( ℎ ‘ 𝑖 ) ) | |
| 92 | 90 91 | oveq12d | ⊢ ( 𝑘 = 𝑖 → ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) = ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) ) |
| 93 | 89 92 | eleq12d | ⊢ ( 𝑘 = 𝑖 → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ↔ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) ) ) |
| 94 | 93 | rspcv | ⊢ ( 𝑖 ∈ ω → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) ) ) |
| 95 | 94 | 3ad2ant3 | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) ) ) |
| 96 | 95 | imp | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) ) |
| 97 | 96 | 3adant3 | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) ) |
| 98 | eqcom | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑖 ) ↔ ( 𝑓 ‘ 𝑖 ) = 𝑧 ) | |
| 99 | f1ocnvfv | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( ( 𝑓 ‘ 𝑖 ) = 𝑧 → ( ◡ 𝑓 ‘ 𝑧 ) = 𝑖 ) ) | |
| 100 | 98 99 | biimtrid | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( 𝑧 = ( 𝑓 ‘ 𝑖 ) → ( ◡ 𝑓 ‘ 𝑧 ) = 𝑖 ) ) |
| 101 | 100 | 3adant1 | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( 𝑧 = ( 𝑓 ‘ 𝑖 ) → ( ◡ 𝑓 ‘ 𝑧 ) = 𝑖 ) ) |
| 102 | 101 | imp | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( ◡ 𝑓 ‘ 𝑧 ) = 𝑖 ) |
| 103 | 102 | eqcomd | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → 𝑖 = ( ◡ 𝑓 ‘ 𝑧 ) ) |
| 104 | 103 | 3adant2 | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → 𝑖 = ( ◡ 𝑓 ‘ 𝑧 ) ) |
| 105 | suceq | ⊢ ( 𝑖 = ( ◡ 𝑓 ‘ 𝑧 ) → suc 𝑖 = suc ( ◡ 𝑓 ‘ 𝑧 ) ) | |
| 106 | 104 105 | syl | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → suc 𝑖 = suc ( ◡ 𝑓 ‘ 𝑧 ) ) |
| 107 | 106 | fveq2d | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( ℎ ‘ suc 𝑖 ) = ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑧 ) ) ) |
| 108 | simpr | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑖 ∈ ω ) → 𝑖 ∈ ω ) | |
| 109 | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑖 ∈ ω ) → ( ℎ ‘ 𝑖 ) ∈ ∪ 𝐴 ) | |
| 110 | fveq2 | ⊢ ( 𝑛 = 𝑖 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑖 ) ) | |
| 111 | eqidd | ⊢ ( 𝑦 = ( ℎ ‘ 𝑖 ) → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) | |
| 112 | fvex | ⊢ ( 𝑓 ‘ 𝑖 ) ∈ V | |
| 113 | 110 111 2 112 | ovmpo | ⊢ ( ( 𝑖 ∈ ω ∧ ( ℎ ‘ 𝑖 ) ∈ ∪ 𝐴 ) → ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) = ( 𝑓 ‘ 𝑖 ) ) |
| 114 | 108 109 113 | syl2anc | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑖 ∈ ω ) → ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) = ( 𝑓 ‘ 𝑖 ) ) |
| 115 | 114 | 3adant2 | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) = ( 𝑓 ‘ 𝑖 ) ) |
| 116 | 115 | 3ad2ant1 | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( 𝑖 𝐹 ( ℎ ‘ 𝑖 ) ) = ( 𝑓 ‘ 𝑖 ) ) |
| 117 | 97 107 116 | 3eltr3d | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑓 ‘ 𝑖 ) ) |
| 118 | 37 | ffvelcdmda | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( 𝑓 ‘ 𝑖 ) ∈ 𝐴 ) |
| 119 | 118 | 3adant1 | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( 𝑓 ‘ 𝑖 ) ∈ 𝐴 ) |
| 120 | 119 | 3ad2ant1 | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( 𝑓 ‘ 𝑖 ) ∈ 𝐴 ) |
| 121 | eleq1 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑖 ) → ( 𝑧 ∈ 𝐴 ↔ ( 𝑓 ‘ 𝑖 ) ∈ 𝐴 ) ) | |
| 122 | 121 | 3ad2ant3 | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( 𝑧 ∈ 𝐴 ↔ ( 𝑓 ‘ 𝑖 ) ∈ 𝐴 ) ) |
| 123 | 120 122 | mpbird | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → 𝑧 ∈ 𝐴 ) |
| 124 | fveq2 | ⊢ ( 𝑤 = 𝑧 → ( ◡ 𝑓 ‘ 𝑤 ) = ( ◡ 𝑓 ‘ 𝑧 ) ) | |
| 125 | suceq | ⊢ ( ( ◡ 𝑓 ‘ 𝑤 ) = ( ◡ 𝑓 ‘ 𝑧 ) → suc ( ◡ 𝑓 ‘ 𝑤 ) = suc ( ◡ 𝑓 ‘ 𝑧 ) ) | |
| 126 | 124 125 | syl | ⊢ ( 𝑤 = 𝑧 → suc ( ◡ 𝑓 ‘ 𝑤 ) = suc ( ◡ 𝑓 ‘ 𝑧 ) ) |
| 127 | 126 | fveq2d | ⊢ ( 𝑤 = 𝑧 → ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) = ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑧 ) ) ) |
| 128 | fvex | ⊢ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑧 ) ) ∈ V | |
| 129 | 127 3 128 | fvmpt | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝐺 ‘ 𝑧 ) = ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑧 ) ) ) |
| 130 | 123 129 | syl | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( 𝐺 ‘ 𝑧 ) = ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑧 ) ) ) |
| 131 | simp3 | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → 𝑧 = ( 𝑓 ‘ 𝑖 ) ) | |
| 132 | 117 130 131 | 3eltr4d | ⊢ ( ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ∧ 𝑧 = ( 𝑓 ‘ 𝑖 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) |
| 133 | 132 | 3exp | ⊢ ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( 𝑧 = ( 𝑓 ‘ 𝑖 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 134 | 133 | com3r | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑖 ) → ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 135 | 134 | 3expd | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑖 ) → ( ℎ : ω ⟶ ∪ 𝐴 → ( 𝑓 : ω –1-1-onto→ 𝐴 → ( 𝑖 ∈ ω → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) ) |
| 136 | 135 | com4r | ⊢ ( 𝑖 ∈ ω → ( 𝑧 = ( 𝑓 ‘ 𝑖 ) → ( ℎ : ω ⟶ ∪ 𝐴 → ( 𝑓 : ω –1-1-onto→ 𝐴 → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) ) |
| 137 | 136 | rexlimiv | ⊢ ( ∃ 𝑖 ∈ ω 𝑧 = ( 𝑓 ‘ 𝑖 ) → ( ℎ : ω ⟶ ∪ 𝐴 → ( 𝑓 : ω –1-1-onto→ 𝐴 → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
| 138 | 87 137 | syl | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ℎ : ω ⟶ ∪ 𝐴 → ( 𝑓 : ω –1-1-onto→ 𝐴 → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
| 139 | 84 138 | mpid | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ℎ : ω ⟶ ∪ 𝐴 → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 140 | 139 | impd | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 141 | 140 | impancom | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑧 ∈ 𝐴 → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 142 | 83 141 | syl5 | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 143 | 142 | expd | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 144 | 143 | ralrimiv | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 145 | fvrn0 | ⊢ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ∈ ( ran ℎ ∪ { ∅ } ) | |
| 146 | 145 | rgenw | ⊢ ∀ 𝑤 ∈ 𝐴 ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ∈ ( ran ℎ ∪ { ∅ } ) |
| 147 | eqid | ⊢ ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) | |
| 148 | 147 | fmpt | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ∈ ( ran ℎ ∪ { ∅ } ) ↔ ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) : 𝐴 ⟶ ( ran ℎ ∪ { ∅ } ) ) |
| 149 | 146 148 | mpbi | ⊢ ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) : 𝐴 ⟶ ( ran ℎ ∪ { ∅ } ) |
| 150 | vex | ⊢ ℎ ∈ V | |
| 151 | 150 | rnex | ⊢ ran ℎ ∈ V |
| 152 | p0ex | ⊢ { ∅ } ∈ V | |
| 153 | 151 152 | unex | ⊢ ( ran ℎ ∪ { ∅ } ) ∈ V |
| 154 | fex2 | ⊢ ( ( ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) : 𝐴 ⟶ ( ran ℎ ∪ { ∅ } ) ∧ 𝐴 ∈ V ∧ ( ran ℎ ∪ { ∅ } ) ∈ V ) → ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) ∈ V ) | |
| 155 | 149 68 153 154 | mp3an | ⊢ ( 𝑤 ∈ 𝐴 ↦ ( ℎ ‘ suc ( ◡ 𝑓 ‘ 𝑤 ) ) ) ∈ V |
| 156 | 3 155 | eqeltri | ⊢ 𝐺 ∈ V |
| 157 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 158 | 157 | eleq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 159 | 158 | imbi2d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 160 | 159 | ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 161 | 156 160 | spcev | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 162 | 144 161 | syl | ⊢ ( ( 𝑓 : ω –1-1-onto→ 𝐴 ∧ ( ℎ : ω ⟶ ∪ 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ℎ ‘ 𝑘 ) ) ) ) → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 163 | 77 162 | exlimddv | ⊢ ( 𝑓 : ω –1-1-onto→ 𝐴 → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 164 | 163 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : ω –1-1-onto→ 𝐴 → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 165 | 36 164 | sylbi | ⊢ ( ω ≈ 𝐴 → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 166 | 34 35 165 | 3syl | ⊢ ( 𝑥 ≈ ω → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |