This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem isfinite2

Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of Suppes p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion isfinite2 ( 𝐴 ≺ ω → 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 relsdom Rel ≺
2 1 brrelex2i ( 𝐴 ≺ ω → ω ∈ V )
3 sdomdom ( 𝐴 ≺ ω → 𝐴 ≼ ω )
4 domeng ( ω ∈ V → ( 𝐴 ≼ ω ↔ ∃ 𝑦 ( 𝐴𝑦𝑦 ⊆ ω ) ) )
5 3 4 imbitrid ( ω ∈ V → ( 𝐴 ≺ ω → ∃ 𝑦 ( 𝐴𝑦𝑦 ⊆ ω ) ) )
6 ensym ( 𝐴𝑦𝑦𝐴 )
7 6 ad2antrl ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → 𝑦𝐴 )
8 simpl ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → 𝐴 ≺ ω )
9 ensdomtr ( ( 𝑦𝐴𝐴 ≺ ω ) → 𝑦 ≺ ω )
10 7 8 9 syl2anc ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → 𝑦 ≺ ω )
11 sdomnen ( 𝑦 ≺ ω → ¬ 𝑦 ≈ ω )
12 10 11 syl ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → ¬ 𝑦 ≈ ω )
13 simpr ( ( 𝐴𝑦𝑦 ⊆ ω ) → 𝑦 ⊆ ω )
14 unbnn ( ( ω ∈ V ∧ 𝑦 ⊆ ω ∧ ∀ 𝑧 ∈ ω ∃ 𝑤𝑦 𝑧𝑤 ) → 𝑦 ≈ ω )
15 14 3expia ( ( ω ∈ V ∧ 𝑦 ⊆ ω ) → ( ∀ 𝑧 ∈ ω ∃ 𝑤𝑦 𝑧𝑤𝑦 ≈ ω ) )
16 2 13 15 syl2an ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → ( ∀ 𝑧 ∈ ω ∃ 𝑤𝑦 𝑧𝑤𝑦 ≈ ω ) )
17 12 16 mtod ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → ¬ ∀ 𝑧 ∈ ω ∃ 𝑤𝑦 𝑧𝑤 )
18 rexnal ( ∃ 𝑧 ∈ ω ¬ ∃ 𝑤𝑦 𝑧𝑤 ↔ ¬ ∀ 𝑧 ∈ ω ∃ 𝑤𝑦 𝑧𝑤 )
19 omsson ω ⊆ On
20 sstr ( ( 𝑦 ⊆ ω ∧ ω ⊆ On ) → 𝑦 ⊆ On )
21 19 20 mpan2 ( 𝑦 ⊆ ω → 𝑦 ⊆ On )
22 nnord ( 𝑧 ∈ ω → Ord 𝑧 )
23 ssel2 ( ( 𝑦 ⊆ On ∧ 𝑤𝑦 ) → 𝑤 ∈ On )
24 vex 𝑤 ∈ V
25 24 elon ( 𝑤 ∈ On ↔ Ord 𝑤 )
26 23 25 sylib ( ( 𝑦 ⊆ On ∧ 𝑤𝑦 ) → Ord 𝑤 )
27 ordtri1 ( ( Ord 𝑤 ∧ Ord 𝑧 ) → ( 𝑤𝑧 ↔ ¬ 𝑧𝑤 ) )
28 26 27 sylan ( ( ( 𝑦 ⊆ On ∧ 𝑤𝑦 ) ∧ Ord 𝑧 ) → ( 𝑤𝑧 ↔ ¬ 𝑧𝑤 ) )
29 28 an32s ( ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) ∧ 𝑤𝑦 ) → ( 𝑤𝑧 ↔ ¬ 𝑧𝑤 ) )
30 29 ralbidva ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ∀ 𝑤𝑦 𝑤𝑧 ↔ ∀ 𝑤𝑦 ¬ 𝑧𝑤 ) )
31 unissb ( 𝑦𝑧 ↔ ∀ 𝑤𝑦 𝑤𝑧 )
32 ralnex ( ∀ 𝑤𝑦 ¬ 𝑧𝑤 ↔ ¬ ∃ 𝑤𝑦 𝑧𝑤 )
33 32 bicomi ( ¬ ∃ 𝑤𝑦 𝑧𝑤 ↔ ∀ 𝑤𝑦 ¬ 𝑧𝑤 )
34 30 31 33 3bitr4g ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( 𝑦𝑧 ↔ ¬ ∃ 𝑤𝑦 𝑧𝑤 ) )
35 ordunisssuc ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( 𝑦𝑧𝑦 ⊆ suc 𝑧 ) )
36 34 35 bitr3d ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ¬ ∃ 𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧 ) )
37 21 22 36 syl2an ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( ¬ ∃ 𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧 ) )
38 peano2b ( 𝑧 ∈ ω ↔ suc 𝑧 ∈ ω )
39 ssnnfi ( ( suc 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧 ) → 𝑦 ∈ Fin )
40 38 39 sylanb ( ( 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧 ) → 𝑦 ∈ Fin )
41 40 ex ( 𝑧 ∈ ω → ( 𝑦 ⊆ suc 𝑧𝑦 ∈ Fin ) )
42 41 adantl ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 ⊆ suc 𝑧𝑦 ∈ Fin ) )
43 37 42 sylbid ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( ¬ ∃ 𝑤𝑦 𝑧𝑤𝑦 ∈ Fin ) )
44 43 rexlimdva ( 𝑦 ⊆ ω → ( ∃ 𝑧 ∈ ω ¬ ∃ 𝑤𝑦 𝑧𝑤𝑦 ∈ Fin ) )
45 18 44 biimtrrid ( 𝑦 ⊆ ω → ( ¬ ∀ 𝑧 ∈ ω ∃ 𝑤𝑦 𝑧𝑤𝑦 ∈ Fin ) )
46 45 ad2antll ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → ( ¬ ∀ 𝑧 ∈ ω ∃ 𝑤𝑦 𝑧𝑤𝑦 ∈ Fin ) )
47 17 46 mpd ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → 𝑦 ∈ Fin )
48 simprl ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → 𝐴𝑦 )
49 enfii ( ( 𝑦 ∈ Fin ∧ 𝐴𝑦 ) → 𝐴 ∈ Fin )
50 47 48 49 syl2anc ( ( 𝐴 ≺ ω ∧ ( 𝐴𝑦𝑦 ⊆ ω ) ) → 𝐴 ∈ Fin )
51 50 ex ( 𝐴 ≺ ω → ( ( 𝐴𝑦𝑦 ⊆ ω ) → 𝐴 ∈ Fin ) )
52 51 exlimdv ( 𝐴 ≺ ω → ( ∃ 𝑦 ( 𝐴𝑦𝑦 ⊆ ω ) → 𝐴 ∈ Fin ) )
53 5 52 sylcom ( ω ∈ V → ( 𝐴 ≺ ω → 𝐴 ∈ Fin ) )
54 2 53 mpcom ( 𝐴 ≺ ω → 𝐴 ∈ Fin )