This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of Suppes p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfinite2 | ⊢ ( 𝐴 ≺ ω → 𝐴 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i | ⊢ ( 𝐴 ≺ ω → ω ∈ V ) |
| 3 | sdomdom | ⊢ ( 𝐴 ≺ ω → 𝐴 ≼ ω ) | |
| 4 | domeng | ⊢ ( ω ∈ V → ( 𝐴 ≼ ω ↔ ∃ 𝑦 ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) ) | |
| 5 | 3 4 | imbitrid | ⊢ ( ω ∈ V → ( 𝐴 ≺ ω → ∃ 𝑦 ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) ) |
| 6 | ensym | ⊢ ( 𝐴 ≈ 𝑦 → 𝑦 ≈ 𝐴 ) | |
| 7 | 6 | ad2antrl | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝑦 ≈ 𝐴 ) |
| 8 | simpl | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝐴 ≺ ω ) | |
| 9 | ensdomtr | ⊢ ( ( 𝑦 ≈ 𝐴 ∧ 𝐴 ≺ ω ) → 𝑦 ≺ ω ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝑦 ≺ ω ) |
| 11 | sdomnen | ⊢ ( 𝑦 ≺ ω → ¬ 𝑦 ≈ ω ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → ¬ 𝑦 ≈ ω ) |
| 13 | simpr | ⊢ ( ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) → 𝑦 ⊆ ω ) | |
| 14 | unbnn | ⊢ ( ( ω ∈ V ∧ 𝑦 ⊆ ω ∧ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) → 𝑦 ≈ ω ) | |
| 15 | 14 | 3expia | ⊢ ( ( ω ∈ V ∧ 𝑦 ⊆ ω ) → ( ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ≈ ω ) ) |
| 16 | 2 13 15 | syl2an | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → ( ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ≈ ω ) ) |
| 17 | 12 16 | mtod | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → ¬ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) |
| 18 | rexnal | ⊢ ( ∃ 𝑧 ∈ ω ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ↔ ¬ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) | |
| 19 | omsson | ⊢ ω ⊆ On | |
| 20 | sstr | ⊢ ( ( 𝑦 ⊆ ω ∧ ω ⊆ On ) → 𝑦 ⊆ On ) | |
| 21 | 19 20 | mpan2 | ⊢ ( 𝑦 ⊆ ω → 𝑦 ⊆ On ) |
| 22 | nnord | ⊢ ( 𝑧 ∈ ω → Ord 𝑧 ) | |
| 23 | ssel2 | ⊢ ( ( 𝑦 ⊆ On ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ On ) | |
| 24 | vex | ⊢ 𝑤 ∈ V | |
| 25 | 24 | elon | ⊢ ( 𝑤 ∈ On ↔ Ord 𝑤 ) |
| 26 | 23 25 | sylib | ⊢ ( ( 𝑦 ⊆ On ∧ 𝑤 ∈ 𝑦 ) → Ord 𝑤 ) |
| 27 | ordtri1 | ⊢ ( ( Ord 𝑤 ∧ Ord 𝑧 ) → ( 𝑤 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑤 ) ) | |
| 28 | 26 27 | sylan | ⊢ ( ( ( 𝑦 ⊆ On ∧ 𝑤 ∈ 𝑦 ) ∧ Ord 𝑧 ) → ( 𝑤 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑤 ) ) |
| 29 | 28 | an32s | ⊢ ( ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) ∧ 𝑤 ∈ 𝑦 ) → ( 𝑤 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑤 ) ) |
| 30 | 29 | ralbidva | ⊢ ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ∀ 𝑤 ∈ 𝑦 𝑤 ⊆ 𝑧 ↔ ∀ 𝑤 ∈ 𝑦 ¬ 𝑧 ∈ 𝑤 ) ) |
| 31 | unissb | ⊢ ( ∪ 𝑦 ⊆ 𝑧 ↔ ∀ 𝑤 ∈ 𝑦 𝑤 ⊆ 𝑧 ) | |
| 32 | ralnex | ⊢ ( ∀ 𝑤 ∈ 𝑦 ¬ 𝑧 ∈ 𝑤 ↔ ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) | |
| 33 | 32 | bicomi | ⊢ ( ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ↔ ∀ 𝑤 ∈ 𝑦 ¬ 𝑧 ∈ 𝑤 ) |
| 34 | 30 31 33 | 3bitr4g | ⊢ ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ∪ 𝑦 ⊆ 𝑧 ↔ ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) ) |
| 35 | ordunisssuc | ⊢ ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ∪ 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ suc 𝑧 ) ) | |
| 36 | 34 35 | bitr3d | ⊢ ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ↔ 𝑦 ⊆ suc 𝑧 ) ) |
| 37 | 21 22 36 | syl2an | ⊢ ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ↔ 𝑦 ⊆ suc 𝑧 ) ) |
| 38 | peano2b | ⊢ ( 𝑧 ∈ ω ↔ suc 𝑧 ∈ ω ) | |
| 39 | ssnnfi | ⊢ ( ( suc 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧 ) → 𝑦 ∈ Fin ) | |
| 40 | 38 39 | sylanb | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧 ) → 𝑦 ∈ Fin ) |
| 41 | 40 | ex | ⊢ ( 𝑧 ∈ ω → ( 𝑦 ⊆ suc 𝑧 → 𝑦 ∈ Fin ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 ⊆ suc 𝑧 → 𝑦 ∈ Fin ) ) |
| 43 | 37 42 | sylbid | ⊢ ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ∈ Fin ) ) |
| 44 | 43 | rexlimdva | ⊢ ( 𝑦 ⊆ ω → ( ∃ 𝑧 ∈ ω ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ∈ Fin ) ) |
| 45 | 18 44 | biimtrrid | ⊢ ( 𝑦 ⊆ ω → ( ¬ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ∈ Fin ) ) |
| 46 | 45 | ad2antll | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → ( ¬ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ∈ Fin ) ) |
| 47 | 17 46 | mpd | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝑦 ∈ Fin ) |
| 48 | simprl | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝐴 ≈ 𝑦 ) | |
| 49 | enfii | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝐴 ≈ 𝑦 ) → 𝐴 ∈ Fin ) | |
| 50 | 47 48 49 | syl2anc | ⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝐴 ∈ Fin ) |
| 51 | 50 | ex | ⊢ ( 𝐴 ≺ ω → ( ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) → 𝐴 ∈ Fin ) ) |
| 52 | 51 | exlimdv | ⊢ ( 𝐴 ≺ ω → ( ∃ 𝑦 ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) → 𝐴 ∈ Fin ) ) |
| 53 | 5 52 | sylcom | ⊢ ( ω ∈ V → ( 𝐴 ≺ ω → 𝐴 ∈ Fin ) ) |
| 54 | 2 53 | mpcom | ⊢ ( 𝐴 ≺ ω → 𝐴 ∈ Fin ) |