This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinneg | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 6 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 | 7 | sqrtcld | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 9 | 3 8 | addcld | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 10 | asinlem | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) | |
| 11 | 9 10 | logcld | ⊢ ( 𝐴 ∈ ℂ → ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
| 12 | efneg | ⊢ ( ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ → ( exp ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( 1 / ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( 1 / ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 14 | eflog | ⊢ ( ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ∧ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 15 | 9 10 14 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 1 / ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) = ( 1 / ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 17 | asinlem2 | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = 1 ) | |
| 18 | 4 | a1i | ⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 19 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 20 | mulcl | ⊢ ( ( i ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) ∈ ℂ ) | |
| 21 | 1 19 20 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) ∈ ℂ ) |
| 22 | 19 | sqcld | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) ∈ ℂ ) |
| 23 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( - 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( - 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 24 | 4 22 23 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( - 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 25 | 24 | sqrtcld | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 26 | 21 25 | addcld | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 27 | 18 9 26 10 | divmuld | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 / ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ↔ ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = 1 ) ) |
| 28 | 17 27 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( 1 / ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) |
| 29 | 13 16 28 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) |
| 30 | asinlem | ⊢ ( - 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) | |
| 31 | 19 30 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
| 32 | 11 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
| 33 | 11 | imnegd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 34 | 11 | imcld | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ) |
| 35 | 34 | renegcld | ⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ) |
| 36 | pire | ⊢ π ∈ ℝ | |
| 37 | 36 | a1i | ⊢ ( 𝐴 ∈ ℂ → π ∈ ℝ ) |
| 38 | 9 10 | logimcld | ⊢ ( 𝐴 ∈ ℂ → ( - π < ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∧ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≤ π ) ) |
| 39 | 38 | simprd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≤ π ) |
| 40 | 9 | renegd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = - ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 41 | asinlem3 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) | |
| 42 | 9 | recld | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℝ ) |
| 43 | 42 | le0neg2d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ↔ - ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ≤ 0 ) ) |
| 44 | 41 43 | mpbid | ⊢ ( 𝐴 ∈ ℂ → - ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ≤ 0 ) |
| 45 | 40 44 | eqbrtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ≤ 0 ) |
| 46 | 9 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 47 | 46 | recld | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℝ ) |
| 48 | 0re | ⊢ 0 ∈ ℝ | |
| 49 | lenlt | ⊢ ( ( ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ≤ 0 ↔ ¬ 0 < ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) | |
| 50 | 47 48 49 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ≤ 0 ↔ ¬ 0 < ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 51 | 45 50 | mpbid | ⊢ ( 𝐴 ∈ ℂ → ¬ 0 < ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 52 | lognegb | ⊢ ( ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ∧ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) → ( - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = π ) ) | |
| 53 | 9 10 52 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = π ) ) |
| 54 | rpgt0 | ⊢ ( - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ+ → 0 < - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 55 | rpre | ⊢ ( - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ+ → - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ ) | |
| 56 | 55 | rered | ⊢ ( - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ+ → ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 57 | 54 56 | breqtrrd | ⊢ ( - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ+ → 0 < ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 58 | 53 57 | biimtrrdi | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = π → 0 < ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 59 | 58 | necon3bd | ⊢ ( 𝐴 ∈ ℂ → ( ¬ 0 < ( ℜ ‘ - ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) → ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≠ π ) ) |
| 60 | 51 59 | mpd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≠ π ) |
| 61 | 60 | necomd | ⊢ ( 𝐴 ∈ ℂ → π ≠ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 62 | 34 37 39 61 | leneltd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) < π ) |
| 63 | ltneg | ⊢ ( ( ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) | |
| 64 | 34 36 63 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 65 | 62 64 | mpbid | ⊢ ( 𝐴 ∈ ℂ → - π < - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 66 | 38 | simpld | ⊢ ( 𝐴 ∈ ℂ → - π < ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 67 | 36 | renegcli | ⊢ - π ∈ ℝ |
| 68 | ltle | ⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) → - π ≤ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) | |
| 69 | 67 34 68 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - π < ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) → - π ≤ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 70 | 66 69 | mpd | ⊢ ( 𝐴 ∈ ℂ → - π ≤ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 71 | lenegcon1 | ⊢ ( ( π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ) → ( - π ≤ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ↔ - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≤ π ) ) | |
| 72 | 36 34 71 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - π ≤ ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ↔ - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≤ π ) ) |
| 73 | 70 72 | mpbid | ⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≤ π ) |
| 74 | 67 | rexri | ⊢ - π ∈ ℝ* |
| 75 | elioc2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ( - π (,] π ) ↔ ( - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ∧ - π < - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∧ - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≤ π ) ) ) | |
| 76 | 74 36 75 | mp2an | ⊢ ( - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ( - π (,] π ) ↔ ( - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ∧ - π < - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∧ - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ≤ π ) ) |
| 77 | 35 65 73 76 | syl3anbrc | ⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ( - π (,] π ) ) |
| 78 | 33 77 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ( - π (,] π ) ) |
| 79 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 80 | ffn | ⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) | |
| 81 | elpreima | ⊢ ( ℑ Fn ℂ → ( - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ∧ ( ℑ ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ( - π (,] π ) ) ) ) | |
| 82 | 79 80 81 | mp2b | ⊢ ( - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ∧ ( ℑ ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ( - π (,] π ) ) ) |
| 83 | 32 78 82 | sylanbrc | ⊢ ( 𝐴 ∈ ℂ → - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 84 | logrn | ⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) | |
| 85 | 83 84 | eleqtrrdi | ⊢ ( 𝐴 ∈ ℂ → - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ran log ) |
| 86 | logeftb | ⊢ ( ( ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ∧ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ∧ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ran log ) → ( ( log ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ↔ ( exp ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) | |
| 87 | 26 31 85 86 | syl3anc | ⊢ ( 𝐴 ∈ ℂ → ( ( log ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ↔ ( exp ‘ - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) |
| 88 | 29 87 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( log ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 89 | 88 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( log ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) = ( - i · - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 90 | negicn | ⊢ - i ∈ ℂ | |
| 91 | mulneg2 | ⊢ ( ( - i ∈ ℂ ∧ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ) → ( - i · - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = - ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) | |
| 92 | 90 11 91 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - i · - ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = - ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 93 | 89 92 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( log ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) = - ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 94 | asinval | ⊢ ( - 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = ( - i · ( log ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) | |
| 95 | 19 94 | syl | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = ( - i · ( log ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 96 | asinval | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) = ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) | |
| 97 | 96 | negeqd | ⊢ ( 𝐴 ∈ ℂ → - ( arcsin ‘ 𝐴 ) = - ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 98 | 93 95 97 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) |