This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument to the logarithm in df-asin is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinlem | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 6 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 | 7 | sqrtcld | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 9 | 3 8 | subnegd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) − - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 10 | 8 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 11 | 0ne1 | ⊢ 0 ≠ 1 | |
| 12 | 0cnd | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) | |
| 13 | 1cnd | ⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) | |
| 14 | subcan2 | ⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 0 − ( 𝐴 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ↔ 0 = 1 ) ) | |
| 15 | 14 | necon3bid | ⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 0 − ( 𝐴 ↑ 2 ) ) ≠ ( 1 − ( 𝐴 ↑ 2 ) ) ↔ 0 ≠ 1 ) ) |
| 16 | 12 13 5 15 | syl3anc | ⊢ ( 𝐴 ∈ ℂ → ( ( 0 − ( 𝐴 ↑ 2 ) ) ≠ ( 1 − ( 𝐴 ↑ 2 ) ) ↔ 0 ≠ 1 ) ) |
| 17 | 11 16 | mpbiri | ⊢ ( 𝐴 ∈ ℂ → ( 0 − ( 𝐴 ↑ 2 ) ) ≠ ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 18 | sqmul | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) | |
| 19 | 1 18 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 20 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 21 | 20 | oveq1i | ⊢ ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( - 1 · ( 𝐴 ↑ 2 ) ) |
| 22 | 5 | mulm1d | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 23 | 21 22 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 24 | 19 23 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = - ( 𝐴 ↑ 2 ) ) |
| 25 | df-neg | ⊢ - ( 𝐴 ↑ 2 ) = ( 0 − ( 𝐴 ↑ 2 ) ) | |
| 26 | 24 25 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = ( 0 − ( 𝐴 ↑ 2 ) ) ) |
| 27 | sqneg | ⊢ ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ → ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) | |
| 28 | 8 27 | syl | ⊢ ( 𝐴 ∈ ℂ → ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) |
| 29 | 7 | sqsqrtd | ⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 30 | 28 29 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 31 | 17 26 30 | 3netr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) ≠ ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) |
| 32 | oveq1 | ⊢ ( ( i · 𝐴 ) = - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) → ( ( i · 𝐴 ) ↑ 2 ) = ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) | |
| 33 | 32 | necon3i | ⊢ ( ( ( i · 𝐴 ) ↑ 2 ) ≠ ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) → ( i · 𝐴 ) ≠ - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 34 | 31 33 | syl | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ≠ - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 35 | 3 10 34 | subne0d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) − - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
| 36 | 9 35 | eqnetrrd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |