This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinval | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) = ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( 1 − ( 𝑥 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 5 | 1 4 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) = ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) = ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 8 | df-asin | ⊢ arcsin = ( 𝑥 ∈ ℂ ↦ ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ) | |
| 9 | ovex | ⊢ ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) = ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |