This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument to the logarithm in df-asin has the property that replacing A with -u A in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinlem2 | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 6 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 | 7 | sqrtcld | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 9 | 3 8 | addcomd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) ) |
| 10 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 11 | 1 10 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 12 | sqneg | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( - 𝐴 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 15 | 11 14 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 16 | 3 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( i · 𝐴 ) ∈ ℂ ) |
| 17 | 16 8 | addcomd | ⊢ ( 𝐴 ∈ ℂ → ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + - ( i · 𝐴 ) ) ) |
| 18 | 8 3 | negsubd | ⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + - ( i · 𝐴 ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) |
| 19 | 15 17 18 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) |
| 20 | 9 19 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) · ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) ) |
| 21 | 7 | sqsqrtd | ⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 22 | sqmul | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) | |
| 23 | 1 22 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 24 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 25 | 24 | oveq1i | ⊢ ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( - 1 · ( 𝐴 ↑ 2 ) ) |
| 26 | 5 | mulm1d | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 27 | 25 26 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 28 | 23 27 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = - ( 𝐴 ↑ 2 ) ) |
| 29 | 21 28 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) − ( ( i · 𝐴 ) ↑ 2 ) ) = ( ( 1 − ( 𝐴 ↑ 2 ) ) − - ( 𝐴 ↑ 2 ) ) ) |
| 30 | subsq | ⊢ ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) − ( ( i · 𝐴 ) ↑ 2 ) ) = ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) · ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) ) | |
| 31 | 8 3 30 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) − ( ( i · 𝐴 ) ↑ 2 ) ) = ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) · ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) ) |
| 32 | 7 5 | subnegd | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( 𝐴 ↑ 2 ) ) − - ( 𝐴 ↑ 2 ) ) = ( ( 1 − ( 𝐴 ↑ 2 ) ) + ( 𝐴 ↑ 2 ) ) ) |
| 33 | 29 31 32 | 3eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) · ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) = ( ( 1 − ( 𝐴 ↑ 2 ) ) + ( 𝐴 ↑ 2 ) ) ) |
| 34 | npcan | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 1 − ( 𝐴 ↑ 2 ) ) + ( 𝐴 ↑ 2 ) ) = 1 ) | |
| 35 | 4 5 34 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( 𝐴 ↑ 2 ) ) + ( 𝐴 ↑ 2 ) ) = 1 ) |
| 36 | 20 33 35 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = 1 ) |