This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument to the logarithm in df-asin has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinlem3 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℝ ) | |
| 2 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → - 𝐴 ∈ ℂ ) |
| 6 | mulcl | ⊢ ( ( i ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) ∈ ℂ ) | |
| 7 | 3 5 6 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( i · - 𝐴 ) ∈ ℂ ) |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | 5 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( - 𝐴 ↑ 2 ) ∈ ℂ ) |
| 10 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( - 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( - 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 − ( - 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 12 | 11 | sqrtcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 13 | 7 12 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 14 | asinlem | ⊢ ( - 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) | |
| 15 | 5 14 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
| 16 | 13 15 | absrpcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ∈ ℝ+ ) |
| 17 | 2z | ⊢ 2 ∈ ℤ | |
| 18 | rpexpcl | ⊢ ( ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ∈ ℝ+ ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ∈ ℝ+ ) |
| 20 | 19 | rprecred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ∈ ℝ ) |
| 21 | 13 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
| 22 | 21 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ) |
| 23 | 19 | rpreccld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ∈ ℝ+ ) |
| 24 | 23 | rpge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) |
| 25 | imneg | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) |
| 27 | 2 | le0neg2d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ℑ ‘ 𝐴 ) ↔ - ( ℑ ‘ 𝐴 ) ≤ 0 ) ) |
| 28 | 27 | biimpa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → - ( ℑ ‘ 𝐴 ) ≤ 0 ) |
| 29 | 26 28 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ - 𝐴 ) ≤ 0 ) |
| 30 | asinlem3a | ⊢ ( ( - 𝐴 ∈ ℂ ∧ ( ℑ ‘ - 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) | |
| 31 | 5 29 30 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) |
| 32 | 13 | recjd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) = ( ℜ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) |
| 33 | 31 32 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 34 | 20 22 24 33 | mulge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 35 | recval | ⊢ ( ( ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ∧ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) → ( 1 / ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) | |
| 36 | 13 15 35 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 / ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) |
| 37 | asinlem2 | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = 1 ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = 1 ) |
| 39 | 38 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 1 = ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) |
| 40 | 1cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 1 ∈ ℂ ) | |
| 41 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) | |
| 42 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 43 | 3 41 42 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( i · 𝐴 ) ∈ ℂ ) |
| 44 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 45 | 44 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 46 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 47 | 8 45 46 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 48 | 47 | sqrtcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 49 | 43 48 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 50 | 40 49 13 15 | divmul3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( 1 / ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ↔ 1 = ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 51 | 39 50 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 / ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 52 | 19 | rpcnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 53 | 19 | rpne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ≠ 0 ) |
| 54 | 21 52 53 | divrec2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) = ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 55 | 36 51 54 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 56 | 55 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ℜ ‘ ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 57 | 20 21 | remul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) = ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 58 | 56 57 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 59 | 34 58 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 60 | asinlem3a | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) | |
| 61 | 1 2 59 60 | lecasei | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |