This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative symmetry relation of the arccosine. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acosneg | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( π − ( arccos ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | halfcl | ⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) | |
| 3 | 1 2 | ax-mp | ⊢ ( π / 2 ) ∈ ℂ |
| 4 | asincl | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) | |
| 5 | subneg | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) |
| 7 | asinneg | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) = ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) ) |
| 9 | 1 | a1i | ⊢ ( 𝐴 ∈ ℂ → π ∈ ℂ ) |
| 10 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
| 11 | 9 10 4 | subsubd | ⊢ ( 𝐴 ∈ ℂ → ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( π − ( π / 2 ) ) + ( arcsin ‘ 𝐴 ) ) ) |
| 12 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 13 | 1 3 3 12 | subaddrii | ⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 14 | 13 | oveq1i | ⊢ ( ( π − ( π / 2 ) ) + ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) |
| 15 | 11 14 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) |
| 16 | 6 8 15 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) = ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
| 17 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 18 | acosval | ⊢ ( - 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) ) |
| 20 | acosval | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( π − ( arccos ‘ 𝐴 ) ) = ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
| 22 | 16 19 21 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( π − ( arccos ‘ 𝐴 ) ) ) |