This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinneg | |- ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 6 | subcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
|
| 7 | 4 5 6 | sylancr | |- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 8 | 7 | sqrtcld | |- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 9 | 3 8 | addcld | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) |
| 10 | asinlem | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |
|
| 11 | 9 10 | logcld | |- ( A e. CC -> ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) |
| 12 | efneg | |- ( ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
|
| 13 | 11 12 | syl | |- ( A e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 14 | eflog | |- ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
|
| 15 | 9 10 14 | syl2anc | |- ( A e. CC -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 16 | 15 | oveq2d | |- ( A e. CC -> ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) = ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 17 | asinlem2 | |- ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) |
|
| 18 | 4 | a1i | |- ( A e. CC -> 1 e. CC ) |
| 19 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 20 | mulcl | |- ( ( _i e. CC /\ -u A e. CC ) -> ( _i x. -u A ) e. CC ) |
|
| 21 | 1 19 20 | sylancr | |- ( A e. CC -> ( _i x. -u A ) e. CC ) |
| 22 | 19 | sqcld | |- ( A e. CC -> ( -u A ^ 2 ) e. CC ) |
| 23 | subcl | |- ( ( 1 e. CC /\ ( -u A ^ 2 ) e. CC ) -> ( 1 - ( -u A ^ 2 ) ) e. CC ) |
|
| 24 | 4 22 23 | sylancr | |- ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) e. CC ) |
| 25 | 24 | sqrtcld | |- ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) e. CC ) |
| 26 | 21 25 | addcld | |- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) e. CC ) |
| 27 | 18 9 26 10 | divmuld | |- ( A e. CC -> ( ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) <-> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) ) |
| 28 | 17 27 | mpbird | |- ( A e. CC -> ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
| 29 | 13 16 28 | 3eqtrd | |- ( A e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
| 30 | asinlem | |- ( -u A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 ) |
|
| 31 | 19 30 | syl | |- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 ) |
| 32 | 11 | negcld | |- ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) |
| 33 | 11 | imnegd | |- ( A e. CC -> ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 34 | 11 | imcld | |- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) |
| 35 | 34 | renegcld | |- ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) |
| 36 | pire | |- _pi e. RR |
|
| 37 | 36 | a1i | |- ( A e. CC -> _pi e. RR ) |
| 38 | 9 10 | logimcld | |- ( A e. CC -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) |
| 39 | 38 | simprd | |- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) |
| 40 | 9 | renegd | |- ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 41 | asinlem3 | |- ( A e. CC -> 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
|
| 42 | 9 | recld | |- ( A e. CC -> ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR ) |
| 43 | 42 | le0neg2d | |- ( A e. CC -> ( 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) ) |
| 44 | 41 43 | mpbid | |- ( A e. CC -> -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) |
| 45 | 40 44 | eqbrtrd | |- ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) |
| 46 | 9 | negcld | |- ( A e. CC -> -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) |
| 47 | 46 | recld | |- ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR ) |
| 48 | 0re | |- 0 e. RR |
|
| 49 | lenlt | |- ( ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR /\ 0 e. RR ) -> ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 <-> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
|
| 50 | 47 48 49 | sylancl | |- ( A e. CC -> ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 <-> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 51 | 45 50 | mpbid | |- ( A e. CC -> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 52 | lognegb | |- ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) -> ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ <-> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi ) ) |
|
| 53 | 9 10 52 | syl2anc | |- ( A e. CC -> ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ <-> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi ) ) |
| 54 | rpgt0 | |- ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> 0 < -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
|
| 55 | rpre | |- ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR ) |
|
| 56 | 55 | rered | |- ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 57 | 54 56 | breqtrrd | |- ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 58 | 53 57 | biimtrrdi | |- ( A e. CC -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi -> 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 59 | 58 | necon3bd | |- ( A e. CC -> ( -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) =/= _pi ) ) |
| 60 | 51 59 | mpd | |- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) =/= _pi ) |
| 61 | 60 | necomd | |- ( A e. CC -> _pi =/= ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 62 | 34 37 39 61 | leneltd | |- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi ) |
| 63 | ltneg | |- ( ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ _pi e. RR ) -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi <-> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
|
| 64 | 34 36 63 | sylancl | |- ( A e. CC -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi <-> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 65 | 62 64 | mpbid | |- ( A e. CC -> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 66 | 38 | simpld | |- ( A e. CC -> -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 67 | 36 | renegcli | |- -u _pi e. RR |
| 68 | ltle | |- ( ( -u _pi e. RR /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
|
| 69 | 67 34 68 | sylancr | |- ( A e. CC -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 70 | 66 69 | mpd | |- ( A e. CC -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 71 | lenegcon1 | |- ( ( _pi e. RR /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) -> ( -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <-> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) |
|
| 72 | 36 34 71 | sylancr | |- ( A e. CC -> ( -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <-> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) |
| 73 | 70 72 | mpbid | |- ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) |
| 74 | 67 | rexri | |- -u _pi e. RR* |
| 75 | elioc2 | |- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) <-> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) ) |
|
| 76 | 74 36 75 | mp2an | |- ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) <-> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) |
| 77 | 35 65 73 76 | syl3anbrc | |- ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) |
| 78 | 33 77 | eqeltrd | |- ( A e. CC -> ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) |
| 79 | imf | |- Im : CC --> RR |
|
| 80 | ffn | |- ( Im : CC --> RR -> Im Fn CC ) |
|
| 81 | elpreima | |- ( Im Fn CC -> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) <-> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC /\ ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) ) ) |
|
| 82 | 79 80 81 | mp2b | |- ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) <-> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC /\ ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) ) |
| 83 | 32 78 82 | sylanbrc | |- ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 84 | logrn | |- ran log = ( `' Im " ( -u _pi (,] _pi ) ) |
|
| 85 | 83 84 | eleqtrrdi | |- ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ran log ) |
| 86 | logeftb | |- ( ( ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 /\ -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ran log ) -> ( ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) |
|
| 87 | 26 31 85 86 | syl3anc | |- ( A e. CC -> ( ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) |
| 88 | 29 87 | mpbird | |- ( A e. CC -> ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 89 | 88 | oveq2d | |- ( A e. CC -> ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) = ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 90 | negicn | |- -u _i e. CC |
|
| 91 | mulneg2 | |- ( ( -u _i e. CC /\ ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) -> ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
|
| 92 | 90 11 91 | sylancr | |- ( A e. CC -> ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 93 | 89 92 | eqtrd | |- ( A e. CC -> ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 94 | asinval | |- ( -u A e. CC -> ( arcsin ` -u A ) = ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) ) |
|
| 95 | 19 94 | syl | |- ( A e. CC -> ( arcsin ` -u A ) = ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) ) |
| 96 | asinval | |- ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
|
| 97 | 96 | negeqd | |- ( A e. CC -> -u ( arcsin ` A ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 98 | 93 95 97 | 3eqtr4d | |- ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |